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1 Introduction

In this semester we have investigated an iterative method for the nonlinear elliptic partial
differential equation −div(a(u)∇u) = f; u : Ω → R,

u
∣∣
∂Ω

= 0,

where

(i) Ω ⊂ R2 is a bounded domain such that ∂Ω is piecewise smooth;

(ii) a : R → R is measurable, bounded, uniformly positive;

(iii) f ∈ L2(Ω).

We first state the weak formulation of the problem: we are looking for u ∈ H1
0(Ω) such that∫

Ω

a(u)∇u · ∇v =

∫
Ω

fv ∀ v ∈ H1
0(Ω).

Since the argument of a is the unknown function, we will use an iterative method to approximate
u, that is, given some starting value u0, we get un+1 for all n as the solution of the linearized
problem ∫

Ω

a(un)∇un+1 · ∇v =

∫
Ω

fv ∀ v ∈ H1
0(Ω),

where all un are members of H1
0(Ω).

2 The Numerical Method

The numerical solution of the above problem is most often obtained using the finite element
method, that is, we solve the integral equation in some subspace Vh ⊂ H1

0(Ω), where h

corresponds to the mesh width. For the sake of brevity, we will only consider the Courant
subspace and only touch on the differences caused by the extra frozen coefficient term.

In this simple case, the difference only manifests in the construction of the stiffness matrix.
For each basis pair φj,φi we have to calculate (approximate) the bilinear form∫

Ω

a(un)∇φj · ∇φi.
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Using the reference element method, we get that∫
T

a(un)∇φj · ∇φi = |det(Z)|
∫
R

a(un ◦ ξ) (∇φj) ◦ ξ · (∇φi) ◦ ξ

= |det(Z)|Z−1∇φ̂j · Z−1∇φ̂i

∫
R

a(un ◦ ξ)

and since the value of Z−1∇φ̂j · Z−1∇φ̂i is a known constant on the reference triangle, we can
factor out and we only have to evaluate ∫

R

a(un ◦ ξ),

which we have chosen to do with a second-order three-point quadrature using the values at the
nodes. (Higher order quadratures are possible, however, with Courant elements this does not
improve the accuracy. Moreover, our scheme is practical since in the FEM subspace the values
of un are already known in the nodes.)

Lastly, we constructed the iteration as follows: we set u0 ∈ Vh to be the solution of the
problem with a = 1 (i.e. we solve for a Poisson equation), and we use the above method to
calculate un+1 ∈ Vh. Once the relative maximum norm of un − un+1 is smaller than a given
threshold or we have iterated for too long (number of iterations, time), we accept the last un+1 as
the solution.

3 The Experiments

We have conducted tests on two problems, both with the nonlinear function a(u) = δu2 + 1

with sinusoidal (left) and Gaussian (right) right hand sides. We can observe that the method
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reproduces the expected linear convergence and that the quotient of convergence is worse (larger)
as δ grows, i.e. when the problem is farther from linear.
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