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1 Overwiew

In this semester I studied graphs drawn in the plane with edges of integer length, specifically
complete graphs. In other words, these are point sets P = {P1, P2, . . . , Pn} in the plane, where
dist(Pi, Pj) is an integer for every i, j ≤ n. For simplicity we will call them integral point sets.

Remark. Notice that the problem of finding finite integral point sets and finding finite rational
point sets, where every distance is a rational number is the same. For a rational point set we can
enlarge the distances with the common denominator, thus we get an integral point set.

There are many open questions and problems in this topic, the main one is from Erdős, which
is about finding integral point sets with the most number of points where there are no 3 points
on a line and no 4 points on a circle. For now the biggest known sets contains 7 points. Another
famous open problem is from Erdős and Ulam, that asks for a dense set in the plane such that
all pairwise distances are rational [5]. Also, a connected problem is formulated in the Harborth
conjecture, which states that every planar graph has a planar drawing in which every edge is a
straight segment of integer length.

Although there are many unsolved problems, a few steps have been taken. There are construc-
tions of point sets with arbitrary many points on a line or on a circle that have a pairwise rational
distance. Erdős and Anning proved that whenever an infinite number of points in the plane all
have integer distances, the points lie on a straight line [1].

One of the approach to find a large integral point set is to generating a list of sets with 3
points, and comparing them in order to find 2-2 points with the same distances. Then checking
the remaining 2 points whether they have integer distance, and in that case we can combine them
into a 4 point set (see Figure 1). Then repeat the same method with larger and larger sets. It is
a slow, exhausting method and requires a lot of computational power, but the first integer point
sets containing 7 points were found this way [3].

Figure 1: generating a four point set

If we compute the smallest possible diameter for n points, where the diameter is the largest
occurring distance in a point set, we get 1, 8, 73, 174, 2262000 for n = 3, 4, 5, 6, 7 respectively
[2][3]. We can see that the size is rapidly increasing, which makes the search progressively harder.

In this document we will use the characteristic of a triangle, that will be useful later to find
integral point sets. We show that in an integral point set, all triangle has the same characteristics.
We also discuss parametrized point sets, where the distances are given as a polynomial of parame-
ters. This way we can create infinitely many integer point sets using different parameters, so it is
a very useful approach.
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2 Characteristic of a triangle

In this section we introduce some simple but useful lemmas and concepts.
Using Heron’s formula, given the sides of a triangle, we can easily compute the area. If the

three sides of a triangle are all integer, we can write up the area in a 1
4

√
pk1
1 pk2

2 . . . pkn
n form, where

p1, p2, . . . , pn are different primes. We can transform this into the following form:

1

4
L
√∏

pi, L ∈ Z, pi are those primes, where ki was odd.

Definition 2.1. If the area of an integer sided triangle is A△ = l
√
k, where l ∈ Q and k is a

square-free integer, then the characteristic of a triagle is k. Later we denote the characteristic of
the ABC triangle with KABC .

Notice, that the formula above is unique for a given triangle, thus KABC is well defined if the
triangle is not degenerate.

Lemma 2.2. In an integer-sided triangle the cosine of every angle is rational.

Proof. We use the cosine theorem:

c2 = a2 + b2 − 2ab cos γ

a2 + b2 − c2

2ab
= cos γ

Since a, b, c ∈ Z, the left side is rational, thus also the right side.

Theorem 2.3. In an integral point set, any two triangles (determined by 3-3 points) have the
same characteristic.

Proof. It is enough to show this for two triangles that share two vertices, because then if two
triangles are A1A2A3 and B1B2B3, where every point is different, then KA1A2A3

= KA1A2B3
=

KA1B2B3
= KB1B2B3

.
Let the two triangles be ABC and ABD, with side lengths a1, b1, c and a2, b2, c and with

directed angles ∠CAB = α1 and ∠BAD = α2 in the common A vertex, and let α denote the
directed angle ∠CAD (see Figure 2).

Then α = α1 + α2. The triangles ABC, ABD and ACD have areas respectively 1
2b1c |sinα1|,

1
2b2c |sinα2| and 1

2b1b2 |sinα|, (the absolute value is due to the directed angle), and we can write
them up in the form l

√
k, where l ∈ Q and k is a square-free integer. This implies that we can

determine the characteristic from the sine values. Let sinα1 = l1
√
k1, sinα2 = l2

√
k2, sinα =

l3
√
k3, with l1, l2, l3 ∈ Q (not necessarily positive now) and k1, k2, k3 are square-free integers.

l3
√
k3 = sinα = sin(α1 + α2) = sinα1 cosα2 + sinα2 cosα1 = l1

√
k1 cosα1 + l2

√
k2 cosα2

l23k3 = l21(cosα1)
2k1 + l22(cosα2)

2k2 + 2l1l2 cosα1 cosα2

√
k1k2

l23k3 − l21(cosα1)
2k1 − l22(cosα2)

2k2
2l1l2 cosα1 cosα2

=
√

k1k2

By Lemma 2.2, the cosines are rationals, so the left side is rational. Because k1k2 ∈ Z+, and the
square root of a positive integer is either integer or irrational,

√
k1k2 must be integer, thus k1k2 a

square. Since k1 and k2 are square free, they must be equal. They were the characteristics of the
triangles ABC and ABD, so the claim is proven.

3 Parametrization of the distances

Now we are interested in the case when the distances in the integral point set are given in a
parametrized form, specifically the sides are polynomials of the parameters, so dist(Pi, Pj)∈ Z[x].
This is not a new idea; parametric solutions are known for Pythegorian triples and Heronian
triangles. The first integer point sets with seven points in general position were found using
exhaustive search [3], but that resulted in only finitely many constructions. Later Trinh Xuan
Minh created a parametrized construction, which yields a valied construction for infinitely many
values of the parameters. [4]. This motivated us to study parametrized constructions. The idea of
creating bigger constructions by combining smaller ones also works here.
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Figure 2: two different placings of the four point

In this semester I generalized the lemmas in section 2 for the parametric integer point sets.
There can be different interpretations, here we only work with one variant polynomials. Using
Heron’s formula, now the characteristic will be a K(x) ∈ Z[x] polynomial, which is a product of
monic, square free irreducible polynomials for uniqueness.

Theorem 3.1. In an integral point set with polynomial parametrization, every two triangle (de-
termined by 3-3 points) have the same K(x) ∈ Z[x] characteristic.

Proof. Similar to Theorem 2.3, but here every distance is a polynomial, instead of the rational
numbers there are fractions of polynomials, under the squares are product of monic, square free
irreducible polynomials.

Theorem 3.2. Every polynomial integral point set can be written in a coordinate system, where
all point has coordinates in the form (p(x), q(x)

√
k(x)), where p(x), q(x), k(x) ∈ Z[x], k(x) is

monic and square free. Also, k(x) is the same for every point.

Proof. If there are 1 or 2 points, the theorem is trivial. For more points, we fix two of them, A
and B with distance c(x) at the coordinates A = (0, 0) and B = (c(x), 0). We can adjust the other
points to these two. Let a third point be C, with distances dist(A,C) = b(x) and dist(B,C) = a(x).
Let C = (n(x),m(x)). Now AABC(x) =

c(x)m(x)
2 , where AABC(x) is the area of the ABC triangle.

By that: m(x) = 2AABC(x)
c(x) . Since we can compute the area using Heron’s formula, the area can

be written in the usual l(x)
√

k(x) form, so:

m(x) =
2l(x)

√
k(x)

c(x)
,

which is almost the desired form. Let ∠BAC = α(x). By the cosine rule: cosα(x) = b2(x)+c2(x)−a2(x)
2b(x)c(x) ,

and since cosα(x) = n(x)
b(x) :

n(x) =
b2(x) + c2(x)− a2(x)

2c(x)

Now C = (n(x),m(x)) = ( b
2(x)+c2(x)−a2(x)

2c(x) ,
2l(x)

√
k(x)

c(x) ). Since c(x) is the same for every point, we
can multiply the distances by c(x) and get the desired form.

Remark. That means, the problem of finding integer point sets with characteristic 1 is the same as
finding an integer point set where the points have integer coordinates, since the k(x) used above
is the characteristic.

4 Further research

In the next semesters my aim is to examine that if we fix a characteristic, then how can we
generate parametric integer point sets, and hopefully I find new parametric constructions that may
generate new integer point sets.

Also I plan to creating new parametrized sets using the method of uniting smaller ones.
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