GRAPHS WITH INTEGER EDGES ON THE PLANE

Gyenizse-Nagy András

Supervisor: Damásdi Gábor

MOTIVATION

- Connected topics:
 - Erdős-Ulam conjecture: There exists a dense set in the plane in which any two distances are rational.
 - Harborth conjecture: Every planar graph has a planar drawing in which every edge is a straight segment of integer length.
- Find new integer point sets with no 3 points on a line and no 4 points on a circle

OVERVIEW

- Complete graphs = integer point sets
- Biggest one: 7 points
- Is there one consisting 8?
- Needs a lot of

computational power

First found integral point set with 7 points

EXHAUSTIVE SEARCH

EXHAUSTIVE SEARCH

EXHAUSTIVE SEARCH

CHARACTERISTIC

- Area of a triangle: $A = l\sqrt{k} \ l \in \mathbb{Q}$, $k \in \mathbb{Z}$, k square free
- Characteristic: k
- Statement: In an integer point set every triangle has the same characteristic. \rightarrow Faster algorithm

POLINOMIAL CHARACTERIZATION

- Edges: $P(x) \in \mathbb{Z}[x]$
- Characteristic: $K(x) \in \mathbb{Z}[x]$,

monic, square free

COORINATE-SYSTEM

- We can place the points in a coordinate-system where all point has coordinates in the form $(p(x), q(x)\sqrt{k(x)})$, where k(x) is the characteristic.
- If k(x)=1, enough to search integer coorinates

FURTHER RESEARCH

- Examine that if we fix a characteristic, then how can we generate parametric integer point sets, and hopefully I find new parametric constructions that may generate new integer point sets
- Creating new parametrized sets using the method of uniting smaller ones

THANK YOU FOR LISTENING