
1

Ranking Function Based Parameter Estimation
Benedek B. Novák

Supervisor: Balázs Csanád Csáji

I. INTRODUCTION

The aim of this report is to discuss and elaborate on the
generalization of the Ranking function introduced by Ádám
Jung and Balázs Csanád Csáji [1], who used it to make
predictions based on the resampling framework introduced by
Ambrus Tamás and Balázs Csanád Csáji [2].

The advantage of the discussed methods lies in their gener-
ality. Our framework will be the following: We have an i.i.d.
generated sample from Pϑ∗ parameterized by ϑ∗ ∈ Θ where Θ
is a metric space. Furthermore, we have access to a black box,
that can generate samples based on a given parameter - or in a
bit less general, but more preferable case, it can reproduce the
distribution Pϑ using a sample from a uniform distribution.

The main goal is to find the parameter ϑ̂ that generates the
most similar data to the original one. The way to construct
these similarity measures has a great flexibility, but in this
report, we will discuss MMD distance based approaches,
which also have the benefit of being applicable in very general
cases and greatly customisable with the choice of the kernel
function. Finally, the theoretical support for our estimation will
come from the resampling framework, which we will present
shortly.

II. KERNEL MEAN EMBEDDINGS AND MMD

For the sake of completeness, we begin our discussion with
a brief introduction on Reproducing Kernel Hilbert Spaces and
Kernel Mean Embeddings, since they will be a useful tool to
compare the similarity of probability distributions later.

Definition II.1. [3] Let X be an arbitrary set, and H a
Hilbert space of X →R functions and denote the evaluation
functional with Ex : H → R (i.e. Ex(f) = f(x)). H is
called a Reproducing Kernel Hilbert Space (RKHS), if all of
its evaluation functionals are bounded is the sense that there
exists a Cx > 0 for all Ex such that |Ex(f)| ≤ Cx||f ||H.

From the Riesz representation theorem it follows that for
all x ∈ X there exists a kx ∈ H s.t. f(x) = ⟨f, kx⟩H for all
f ∈ H.

Definition II.2. [3] The reproducing kernel of RKHS H over
X is the function k : X × X → R defined as k(x, y) :=
⟨ky, kx⟩H.

Remark. From the statements above it follows that kx =
k(·, x), therefore f(x) = ⟨f, k(·, x)⟩H for all f ∈ H and
x ∈ X . We call this the reproducing property.

Definition II.3. [3] We say that a kernel function k is positive
definite, if for any finite {x1, ..., xn} ⊆ X and {ai}ni=1 ⊂ R
it holds that

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0

Definition II.4. [4] The kernel mean embedding of a proba-
bility measure P into an RKHS H is defined as

µP =

∫
k(·, x) dP(x)

Here the integral is to be interpreted as a Bochner-integral, as
defined in [4] in a similar manner to the Lebesgue integral.

Remark. If EX∼P[
√
k(X,X)] < ∞, then µP ∈ H and

EX∼P[f(X)] = ⟨f, µP⟩H for all f ∈ H.

Definition II.5. [4] The Maximum Mean Discrepancy (MMD)
of two distributions, P and Q is defined as the distance of their
mean embeddings in the RKHS:

MMD2
H[P,Q] = ||µP − µQ||2H

The MMD can be estimated with an unbiased estimator
using samples X,Y from the distributions P,Q with sizes n
and m respectively:

M̂MD
2

H[X,Y ] =
1

n(n− 1)

n∑
i=1

n∑
j=1

k(xi, xj)

+
1

m(m− 1)

m∑
i=1

m∑
j=1

k(yi, yj)

− 2

nm

m∑
i=1

n∑
j=1

k(xi, yj)

III. THE RESAMPLING FRAMEWORK

Now we proceed by introducing the hypothesis tests that
will be used to provide the theoretical support for methods
and the estimated parameters. In order to construct these
hypothesis tests, let P = {Pϑ ∈ Θ} be class of non-
atomic (i.e. Pϑ(x) = 0 ∀x ∈ X ) probability distributions
over X ⊆ Rd, where Θ is the parameter space. We also
assume that there is a distribution Pϑ∗ ∈ P , from which
we receive an i.i.d. sample {x1, ..., xn} ⊆ X . The goal
is to construct hypothesis tests for H0 : Pϑ = Pϑ∗ and
H1 : Pϑ ̸= Pϑ∗ . The core idea of the framework is to generate
m − 1 i.i.d. sets of alternate samples with n elements, each
from Pϑ in order to perform the hypothesis test. We denote
the original sample with S(0), and the i-th alternative sample
with S(i)(ϑ) = (x

(i)
1 (ϑ), ..., x

(i)
n (ϑ)).
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Remark. There are two distinct cases to consider when gen-
erating the alternative samples.
In the first case, we have access to a black box, that given
a ϑ parameter, generates i.i.d. samples from Pϑ at random.
In the second case, again, we have a black box B, but this
time the black box itself doesn’t contain any randomness: it
is a function that gives the same output every time for every
(ϑ, q) ∈ Θ × [0, 1]d pair. However, if q is drawn from the
uniform distribution U [0, 1]d, then B(ϑ, q) has distribution
Pϑ. Examples for the second case are the inverses of the
cumulative distribution functions, or neural networks that
given only random noise can generate meaningful samples.
(For example diffusion models for image generation.)

Note that in the second case, S(i)(ϑ) can be thought of as a
a function of ϑ if we fix a sample from the uniform distribution
a priori.

Definition III.1. [2] Let A be a measurable space, denote
{1, ...,m} with [m]. Then ψ : Am→ [m] is a ranking function
if it satisfies the following properties:
P1) Invariance with regards to the reordering of the last m−1
elements, i.e. for all (a1, ..., am) ∈ Am:

ψ(a1, a2, ..., am) = ψ(a1, aπ(2), ..., aπ(m))

where π is a permutation on the set {2, ...,m}.
P2) Uniqueness in the first variable, i.e. for all i, j ∈ [m] if
ai ̸= aj , then

ψ(ai, {ak}k ̸=i) ̸= ψ(aj , {ak}k ̸=j)

where the shorthand notation is justified by P1.

Ranking functions are mostly based on reference variables
denoted by:

Z(i)(ϑ) := T (S(i)(ϑ), ϑ)

where T : Xn × Θ→R. (Z(0)(ϑ) is defined as T (S(0), ϑ).)
These reference variables might seem a bit arbitrary at first,
so let’s have a look at some examples:

Example. The maximum likelihood based reference variables:
If L(ϑ, S(i)) denotes the log-likelihood of sample S(i), then

Z(i)(ϑ) = ||∇ϑL(ϑ, S(i))||2

Unfortunately to use these as reference variables, we need the
derivative of the log-likelihood function, which makes them
generalize poorly.

Example. MMD based reference variables (with an arbitrary
choice of H RKHS):
The first construction is based on the similarity of the sample
to all other samples:

Z(i)(ϑ) =

n−1∑
j=0

M̂MD
2

H[S(i)(ϑ), S(j)(ϑ)]

This has the benefit of not needing any further a priori
knowledge about the distributions, other than that they are
parameterized by a ϑ ∈ Θ. However, since we need to compare
every sample to every other sample, the runtime becomes
quadratic in the number of resamplings m, so to combat this,

another unbiased estimator can be constructed by doing one
extra resampling from the distribution, denoted by S(m)(ϑ):

Z(i)(ϑ) = M̂MD
2

H[S(i)(ϑ), S(m)(ϑ)]

Here, we compare all samples S(0), S(1)(ϑ), ..., S(m−1)(ϑ) to
S(m)(ϑ) to obtain Z(0)(ϑ), ..., Z(m−1)(ϑ)

These Reference variables are then sorted in ascending
order, so the rank of S(i)(ϑ) becomes its its place in the
ordering, i.e.

ψ(S(i)(ϑ), {S(j)(ϑ)}j ̸=i) = 1 +
∑
j ̸=i

I{Z(j)(ϑ)<Z(i)(ϑ)}

Unfortunately, these reference variables could sometimes take
on the same values for some ϑ, so to insure a strict ordering,
a pseudo-ordering can included in the ranking function:

Definition III.2. [2] Let π : [m] → [m] be a random
permutation, which we select random uniformly from the set
of all such permutations. Then we say that Z(i)(ϑ) <π Z

(j)(ϑ)
if Z(i)(ϑ) < Z(j)(ϑ) or Z(i)(ϑ) = Z(j)(ϑ) and π(i) < π(j).

With this ordering, we can ensure that the reference variable
based ranking functions will indeed be ranking functions.

If Z(j) are constructed in such a way that a better fit between
the sample and Pϑ corresponds to a lower value, then it is clear
that having a lower rank on the original sample would imply
a better estimate of the parameter.

Theorem III.3. [5] Given a ranking function ψ, a parameter
set Θ, and integer hyperparameters (q,m) with 1 ≤ q ≤ m,
under the null hypothesis H0 : Pϑ = Pϑ∗ a confidence region
for ϑ∗ can be constructed as:

Θ̃ψ(q,m) := {ϑ ∈ Θ|1 ≤ ψ(S(0), {S(k)(ϑ)}k ̸=0) ≤ q}

where we have
P(ϑ∗ ∈ Θψ(q,m)) =

q

m

IV. PARAMETER ESTIMATION

From now on, we denote the rank of the original sample
with regards to the m − 1 i.i.d samples generated from Pϑ
with R(ϑ) := ψ(S(0), {S(j)(ϑ)}j∈[1,m−1]) Or, in terms of
reference variables:

R(ϑ) = 1 +

m−1∑
j=1

I{Z(j)(ϑ)<Z(0)(ϑ)}

The key idea is that a ϑ that minimizes R will be a
good estimation, therefore the point estimate is defined as
ϑ̂ ∈ argmin

ϑ∈Θ
R(ϑ). However, since R is a piecewise constant

function in Θ, it is generally a hard problem to find the
estimate. To combat this, the concept of smoothed rank was
introduced by Ádám Jung and Balázs Csanád Csáji [1]:

R̃(ϑ) =



Z(0)

Z
(1)
∗

if Z(0) < Z
(1)
∗

k +
Z(0) − Z

(k)
∗

Z
(k+1)
∗ − Z

(k)
∗

if Z(k)
∗ ≤ Z(0) < Z

(k+1)
∗

m− 1 +
Z(0)

Z
(m−1)
∗

if Z(m−1)
∗ ≤ Z(0)



3

Fig. 1. relative rank (R/m) and smoothed rank of a sample from an expo-
nential distribution with parameter 2 using MMD based reference variables
using a degree 2 polynomial kernel (n = 250, m = 10)

where Z
(1)
∗ (ϑ) ≤ Z

(2)
∗ (ϑ) ≤ ... ≤ Z

(1)
∗ (ϑ) denotes the

ordered version of the reference variables in each point ϑ ∈ Θ
and for the sake of visual clarity, the arguments (ϑ) of
the reference variables were omitted. Here, we assume that
Z(i)(ϑ) ̸= Z(j)(ϑ) ∀i ̸= j Pϑ-almost surely. Another possi-
bility to alter R in order to solve the problem of optimizing
a stepwise constant function without the previous assumption
is with the choice of

R̄(ϑ) = Z(0)(ϑ)− Z
(1)
∗ (ϑ)

It is easy to see that even though the minima of the two
functions might be at two different parameters, they will both
be located in the confidence region Θψ(1,m), if it is not the
empty set.

The continuity of both constructions are entirely dependent
on the continuity of the reference variables, as we will show
next.

Lemma IV.1. Let (Θ, d) be a metric space, and
Z(i) : Θ → R (i ∈ [m]) continuous functions. Denote their
ordered version with Z(i)

∗ :

Z
(i)
∗ (ϑ) = min

j∈[m]

{
Z(j)(ϑ)|#

{
k|Z(j)(ϑ) ≥ Z(k)(ϑ)

}
≥ i

}
i.e. Z(1)

∗ (ϑ) ≤ ... ≤ Z
(1)
∗ (ϑ). (# denotes the cardinality of the

set.) Then Z(i)
∗ are continuous for all i ∈ [m] in Θ.

Proof. Let B(ϑ, δ) = {ϑ′ ∈ Θ|d(ϑ, ϑ′) < δ} denote
the δ neighborhood of ϑ. We need to prove that for any
i ∈ [m], ϑ ∈ Θ and ε > 0 there exists a δ > 0 such that for
any ϑ′ ∈ B(ϑ, δ) it holds that |Z(i)

∗ (ϑ′)−Z
(i)
∗ (ϑ)| < ε. (Note

that it is enough to prove that this is true for all sufficiently
small ε.)

Let I(i)(ϑ) := {k|Z(k)(ϑ) = Z
(i)
∗ (ϑ)} for any fixed i. Since

all Z(k) are continuous, for sufficiently small ε′ > 0 it holds
that I(i)(ϑ) = I

(i)
ε′ (ϑ) where

I(i)ε (ϑ) =
{
k|∃ϑ′ ∈ B(ϑ, ε) : Z(k)(ϑ′) = Z

(i)
∗ (ϑ′)

}

Therefore, since all Z(k) are continuous, there exists a δk
for all ε′ > ε > 0 and k ∈ I(ϑ) such that ∀ϑ′ ∈
B(ϑ, δk) : |Z(k)(ϑ) − Z(k)(ϑ′)| < ε. Let δ := min

k∈I(ϑ)
{δk}.

Now, since |Z(k)(ϑ)−Z(k)(ϑ′)| < ε holds for all ϑ′ ∈ B(ϑ, δ)

and Z
(i)
∗ (ϑ′) takes its value from {Z(k)

∗ (ϑ′)|k ∈ I(ϑ)} for
sufficiently small ε > 0, we have |Z(i)

∗ (ϑ′)−Z(i)
∗ (ϑ)| < ε.

Corollary IV.2. If Z(i) are continuous in Θ, then R̄(ϑ) is
continuous in Θ. Furthermore, if Pϑ(Z(i)(ϑ) = Z(j)(ϑ)) for
all ϑ ∈ Θ and i ̸= j, then R̃(ϑ) is continuous with probability
one.

Proof. R̄ and R̃ were both constructed from elementary
operations of Z(i) and Z(i)

∗ , both of which are continuous.

Now that the continuity of R̃ and R̄ is ensured, stepwise
optimization techniques can be used to find their minimum.

V. ASYMPTOTIC BEHAVIOR

An interesting question that can be asked is what happens
if we increase the number of elements in each sample (n) or
the number of subsamplings (m). From now on, R(ϑ) (and
R̃(ϑ)) will denote the relative rank, which is the rank divided
by m, staying in the [0, 1] interval for every m, so we can
compare its values for different ms.

First, we investigate the asymptotic behavior for n→ ∞,
but for this we need the following lemma:

Lemma V.1. Law of large numbers for kernel mean em-
beddings: Let H be a real RKHS over X and (X ,A,Pϑ)
a probability space. Denote the empirical distribution of a
sample S(ϑ) = {x1, ..., xn} with Qn,ϑ(A) = 1

n

∑n
i=1 Ixi∈A

for all A ∈ A. If EX∼Pϑ
[h(X)] < ∞ for all h ∈ H, then it

holds that ||µPϑ
− µQn,ϑ

||2H→0 if n→∞.

Proof.

||µPϑ
−µQn,ϑ

||2H =
〈
µPϑ

− µQn,ϑ
, µPϑ

− µQn,ϑ

〉
H =

= ⟨µPϑ
, µPϑ

⟩ − 2
〈
µPϑ

, µQn,ϑ

〉
+

〈
µQn,ϑ

, µQn,ϑ

〉
=

=(
〈
µQn,ϑ

, µQn,ϑ

〉
−

〈
µPϑ

, µQn,ϑ

〉
)(1)+

+ (⟨µPϑ
, µPϑ

⟩ −
〈
µPϑ

, µQn,ϑ

〉
)(2)

We will show that both (1) and (2) tend to zero as n→∞.
From the definition of the kernel mean embeddings and the
reproducing property of the RKHS we have:〈

µQn,ϑ
, µQn,ϑ

〉
H =

〈
1

n

n∑
i=1

k(·, xi),
1

n

n∑
j=1

k(·, xj)

〉
H

=

=
1

n

n∑
i=1

1

n

n∑
j=1

k(xj , xi) =
1

n

n∑
i=1

1

n

n∑
j=1

kxi
(xj)

〈
µPϑ

, µQn,ϑ

〉
H =

〈
1

n

n∑
i=1

k(·, xi), µPϑ

〉
H

=

= EX∼Pϑ

[
1

n

n∑
i=1

k(X,xi)

]
=

1

n

n∑
i=1

EX∼Pϑ
[kxi

(X)]

⟨µPϑ
, µPϑ

⟩ = EY∼Pϑ
[EX∼Pϑ

[k(X,Y )]]

First, for (1)→0 we have:
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1

n

n∑
i=1

1

n

n∑
j=1

kxi
(xj)−

1

n

n∑
i=1

EX∼Pϑ
[kxi

(X)] =

=
1

n

n∑
i=1

 1

n

n∑
j=1

kxi
(xj)− EX∼Pϑ

[kxi
(X)]


Here, since kxi

are Pϑ-measurable, and EX∼Pϑ
[kxi

(X)] <
∞, by the strong law of large numbers we have
( 1n

∑n
j=1 kxi(xj) − EX∼Pϑ

[kxi(X)]) → 0 for all i ∈ [n],
therefore (1)→0 holds.

Next, (2)→0 is equivalent to〈
1

n

n∑
i=1

kxi
, µPϑ

〉
H

− ⟨µPϑ
, µPϑ

⟩H=

〈
1

n

n∑
i=1

kxi
− µPϑ

, µPϑ

〉
H

tending to 0 as n→0. For this it is more than enough to show
that

〈
1
n

∑n
i=1 kxi

− µPϑ
, h

〉
H → 0 ∀h ∈ H, i.e. it is the null

vector:〈
1

n

n∑
i=1

kxi
− µPϑ

, h

〉
H

=
1

n

n∑
i=1

⟨kxi
, h⟩ − ⟨µPϑ

, h⟩ =

=
1

n

n∑
i=1

h(xi)− EX∼Pϑ
[h(X)]

here, once again, since EX∼Pϑ
[h(X)] <∞ for every element

h of the RKHS H, the law of large numbers hold, and this
difference tends to 0 as n→∞.

Corollary V.2. From the previous proposition we have ||µPϑ
−

µ
Q

(i)
n,ϑ

||2H→0 for all 1 ≤ i ≤ m and ||µPϑ∗ −µ
Q

(0)
n,ϑ

||2H→0 It

follows that ||µPϑ
−µ

Q
(0)
n,ϑ

||2H→||µPϑ
−µPϑ∗ ||2H > 0, therefore

R(ϑ)→1 as n→∞ for all ϑ ̸= ϑ∗.

Next, to describe the asymptotics in m→∞ we will use
empirical distribution function of the reference variables:

Fig. 2. Rank of the original sample (from an exponential distribution with
parameter λ = 2) for m = 10 resamplings from a given parameter λ using
MMD based reference variables.

Definition V.3. Let X = {x1, ...xm} be a sample of size
m from distribution P. We denote this sample’s empirical
distribution function with

FX,m(x) =
1

m

m∑
i=1

Ixi<x

Remark. The Ranking function R can be expressed with
the empirical distribution function defined by the reference
variables Zm(ϑ) = {Z(i)(ϑ)}m−1

i=1 :

R(ϑ) =
1

m

1 +

m−1∑
j=1

I{Z(j)(ϑ)<Z(0)(ϑ)}

 =

=
1

m
+
m− 1

m

1

m− 1

m−1∑
j=1

I{Z(j)(ϑ)<Z(0)(ϑ)} =

=
1

m
+
m− 1

m
FZm(ϑ),m−1(Z

(0)(ϑ))

Proposition V.4. From this and the Glivenko-Cantelli Lemma
it follows that

lim
m→∞

R(ϑ) = FZ(ϑ)(Z
(0)(ϑ))

where FZ(ϑ) is the distribution function of Z(i)(ϑ) (note that
these are identically distributed for all i ̸= 0)

Corollary V.5. Since |R̃(ϑ)−R(ϑ)| ≤ 1
m by construction, if

Z(0)(ϑ) ≤ Z
(m−1)
∗ (ϑ) (i.e. R̃ ≤ 1), the equality above holds

for R̃(ϑ) as well.

Remark. For R̄, if Z(i)(ϑ) are based on one of the MMD
constructions, then since MMD2

H[Pϑ,Pϑ] = 0, we have

R(ϑ) = lim
m→∞

R̄(ϑ) = lim
m→∞

(
Z(0)(ϑ)− Z

(1)
∗ (ϑ)

)
=

= Z(0)(ϑ)− inf
{
Z

(1)
∗ (ϑ)

}
= Z(0)(ϑ)

VI. CONCLUSION AND FUTURE WORK

The framework discussed in this report is a method to tune
generative models to find their optimal parameters. Under
generative models, we mean the problem where a sample
is given from a parameterized distribution, and we want to
find the parameters that describe the best this distribution
in order to generate synthetic data. It doesn’t provide the
method to generate the synthetic data itself, for that other (even
black box) models, such as neural networks can be used. This
framework instead provides a mathematical guarantees for the
resulting parameters.

The advantage of this framework lies in it’s generality. For
example the MMD based reference variables make very little
assumptions about the family of distributions that they are
working with. The choice of kernels for the MMD based
reference variables, or even the reference variables are highly
customisable (given that their continuity is ensured).

The contribution of this report to the topic is the proof of
continuity for reference variables and the theoretical discussion
of the asymptotic behaviors of the rank functions.

Further work to be made in this project include stepwise
optimization algorithms to find the estimated parameters and
the discussion of their behaviors.
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