Ranking Function Based Parameter Estimation

Benedek Bálint Novák

Supervisor: Balázs Csanád Csáji

Eötvös Loránd Tudományegyetem

2025 Január 9.

(日) (四) (문) (문) (문)

The framework

Given:

- A family of probability distributions {P_ϑ | ϑ ∈ Θ}
 (Θ is a metric space)
- $(x_1, ..., x_n)$ i.i.d. sample from \mathbb{P}_{ϑ^*}
- Black box B that can generate new sample given parameter ϑ

Black box types:

- ▶ 1. Generates an i.i.d. sample from \mathbb{P}_{ϑ}
- 2. Generates a sample given (ϑ, q) ∈ Θ × [0, 1]^d which has distribution P_ϑ if q is drawn from a uniform distribution, i.e. it is a function of ϑ and q that has distribution P_ϑ. (e.g. inverse of CDF)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goal: Approximate ϑ^*

The framework

The Resampling framework

- I. Generate m − 1 alternative samples S⁽¹⁾,...S^(m−1) (we denote the original sample with S⁽⁰⁾) from P_ϑ
- 2. Assign a real number to each sample based on θ and its values called *reference variable*: Z⁽ⁱ⁾(θ) := T(S⁽ⁱ⁾(θ), θ)
- ▶ 3. Rank the samples based on the reference variables:
- ▶ 4. Denote the *rank* of the original sample with $\Re(\vartheta) \in \{1, ..., m\}$

Theorem

 $\mathbb{P}(\vartheta^* \in \{\vartheta \in \Theta | \mathcal{R}(\vartheta) \leq q\}) = \frac{q}{m} \text{ if there is a strict ordering a.s.}$

Remark

If the reference variables are constructed in such a way that a lower value corresponds to a better fit, then $\underset{\vartheta \in \Theta}{\operatorname{argmin}} \mathcal{R}(\vartheta)$ is a good approximation for ϑ^* .

Advantages

- The framework can be used even if we don't know the density functions explicitly
- It also constructs a confidence region for the estimate
- The reference variables are customisable, they can even be black boxes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples of Reference Variables

- ML based reference variable: $Z^{(i)}(\vartheta) = ||\nabla_{\vartheta} \mathcal{L}(\vartheta, S^{(i)})||^2$
- MMD based reference variable: $Z^{(i)}(\vartheta) = \widehat{\text{MMD}}^2[S^{(i)}(\vartheta), S^{(m)}(\vartheta)]$

where $S^{(m)}$ denotes an extra sample and $\widehat{\mathrm{MMD}}^2$ is an unbiased estimator for the Maximum Mean Discrepancy of the two probability distributions.

Remark

The MMD is a customisable similarity measure of probability distributions. Note that MMD based reference variable doesn't require any knowledge about the distributions besides the samples.

Parameter Estimation

Problem:

Hard to optimize

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Parameter Estimation

 $\begin{array}{l} \begin{array}{l} \mathsf{Idea:} \\ \widehat{\vartheta} \in \operatorname*{argmin}_{\vartheta \in \Theta} \ \mathcal{R}(\vartheta) \end{array} \end{array}$

Solution:

Smoothed rank

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Smoothed rank

Continuity of the Smoothed rank

The continuity of the Smoothed rank follows from the continuity of $Z^{(k)}(\vartheta)$, because their pointwise ordered version $(Z^{(k)}_*(\vartheta))$ is also continuous.

Illustration for the proof idea of the continuity of $Z_*^{(k)}(\vartheta)$:

Other solutions

n = 250, m = 10

900

Proposition

 $\underset{m\to\infty}{\lim} \mathcal{R}(\vartheta) = F_{Z(\vartheta)}(Z^{(0)}(\vartheta)) \text{ where } F_{Z(\vartheta)} \text{ denotes the CDF of } Z^{(i)}(\vartheta) \text{ for every } i \neq 0$

Proposition If $\inf \left\{ Z_*^{(1)}(\vartheta) \right\} = 0$, then $\lim_{m \to \infty} \left(Z^{(0)}(\vartheta) - Z_*^{(1)}(\vartheta) \right) = Z^{(0)}(\vartheta) - \inf \left\{ Z_*^{(1)}(\vartheta) \right\} = Z^{(0)}(\vartheta)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Asymptotic behaviour

n = 250, m = 1000

500