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1 Introduction

In statistics binary classification is a funda-
mental problem. We observe a set of i.i.d. input-
output pairs {(Xi, Yi)} in X × Y, where X ⊆ Rd

and the outputs are from two categories {−1, 1}. A
typical task is to estimate the regression function
f∗(x)

.
= E[Y |X = x], from which we can calculate

for a given input value, the probability that the
output is from one of the categories:

P(Y = 1|X = x) =
f∗(x) + 1

2
.

In general it is important to determine how
close the estimate is to the reality. Constructing
confidence regions are a usual way to evaluate the
reliability. Obviously we want confidence regions
with the best possible properties, such as contain-
ing the objective function with at least a given
probability and in addition they are as small as
possible. Also the constructing methods are deter-
mined by several properties e.g. how many and
how strong assumptions they require.

In this project I considered the problem de-
scribed using a certain algorithm, called the Sign-
Perturbed Sums (SPS) [1] and its variants to cre-
ate confidence intervals and regions for regression
and classification [4] problems. Then I dealt with
confidence bands built around the estimation of
the regression function, again also in relation to
regression [2] and classification.

1.1 Previous works

In the first semester I empirically analysed con-
fidence intervals for mean estimation problems. I
compared the performance of the SPS algorithm,
which constructs non-asymptotic, distribution-free
and exact confidence regions, to asymptotic meth-
ods. I also examined the simplest “classification

problem” in which case there are no explanatory
variables.

In the second part I made further steps in the
investigation of binary classification and consid-
ered the problem with one explanatory variable.
My aim was to estimate the regression function
and construct confidence regions around a point
estimator. For this I used the generalization of
the SPS method. The algorithm was also demon-
strated through simulations on synthetic and real
data (e.g. Figure 1). I got promising results, but I
had to choose a parameterized function family in
which I approximated the real regression function.

Figure 1: Application on real data: predicting bank
churn using lognormal distribution family

Resampling framework

The SPS method and its modifications, are
based on a resampling framework. The main idea
is to generate m − 1 alternative outputs for the
original inputs based on the conditional distribu-
tion defined by a parameter θ:

Pθ(Y = 1|X = x) =
1− fθ(x)

2
.

Let D0 = {(Xj , Yj)}nj=1 denote the original sam-
ple, then we construct the i-th alternative sample
by

Di(θ)
.
= {(Xj , Yi,j(θ))}nj=1,

where Yi,j(θ) is generated from Pθ(Y = 1|Xj).
Here we have two observations:

1



1. If θ = θ∗, then D0 and Di(θ
∗) comes from

the same distribution.

2. If θ ̸= θ∗, then the distribution of Di(θ) dif-
fers from that D0.

The significance of the difference can be detected
with a statistical test, considering the following hy-
potheses:

H0 : f∗ = fθ

H1 : f∗ ̸= fθ

1.2 Current study

In the third part of the project for constructing
confidence bands and intervals I used nonparamet-
ric methods. The aim was to estimate the regres-
sion function in reproducing kernel Hilbert spaces
and built around the estimation confidence bands.

First I present the necessary theoretical foun-
dations: the construction of reproducing kernel
Hilbert spaces, especially Paley-Wiener spaces and
fitting via kernel ridge regression. I also made
some plots to show how the kernel ridge estima-
tion works for different regularization parameters,
where we can see that with an inappropriate value
the estimate will not be accurate enough or it will
overfit the noise.

In the next section I introduce a method for
constructing nonparametric, non-asymptotic and
distribution-free confidence bands [2] for regres-
sion problems. I discuss this task in two parts: the
case without noise, i.e. when the regression func-
tion is observed exactly, and the case with noisy
observations. I also implemented the algorithms
and demonstrated the method on synthetic exam-
ples.

Finally I describe an idea to reformulate the
previous approach to binary classification. It has
not yet been perfected, but it could be promising.
The method would provide theoretical guarantees,
but it is computationally demanding and requires
further investigation to be applied in practice.

2 Preliminaries

Subsections 2.1 and 2.3 are based on [5].

2.1 Reproducing kernel Hilbert spaces
(RKHS)

Let V be a vector space with an inner prod-
uct. Since every inner product induces a norm:
∥f∥V :=

√
⟨f, f⟩V, we can define the Cauchy se-

quences on this space in the usual way.

Definition 1 A Hilbert space H is a complete in-
ner product space (H, ⟨·, ·⟩H), i.e., every Cauchy
sequence (fn)

∞
n=1 in H converges to some element

f∗ ∈ H.

Definition 2 A linear functional on a Hilbert
space is a mapping L : H → R that is linear,
meaning that L(f + αg) = L(f) + αL(g) for all
f, g ∈ H and α ∈ R. A linear functional is said to
be bounded if there exists some M < ∞ such that
|L(f)| ≤M∥f∥H for all f ∈ H.

Theorem 1 (Riesz representation) Let L be a
bounded linear functional on a Hilbert space. Then
there exists a unique g ∈ H such that L(f) =

⟨f, g⟩H for all f ∈ H.

The reproducing kernel Hilbert spaces are
spaces of real functions on a domain X .

Definition 3 (PD kernel function) A sym-
metric bivariate function K : X × X → R is pos-
itive semidefinite (PSD) if for all integers n ≥ 1

and elements {xi}ni=1 ⊂ X , the n×n Gram matrix
with elements Kij := K(xi, xj) is positive semidef-
inite.

We say that a K kernel has the reproducing
property for the H Hilbert space, if for any x ∈ X ,
function K(·, x) belongs to H, and it satisfies

⟨f,K(·, x)⟩H = f(x) ∀f ∈ H.

In particular:

⟨K(·, x),K(·, z)⟩H = K(x, z) for all x, z ∈ X .
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Theorem 2 Given any positive definite kernel
function K, there is a unique Hilbert space H in
which the kernel satisfies the reproducing property.
It is called the reproducing kernel Hilbert space as-
sociated with K.

Let H̃ be a set of functions including every

f(·) =
n∑

i=1

αiK(·, xi), (1)

where n ∈ N+, {xi}ni=1 ⊂ X is a set of points and
α ∈ Rn is a weight vector. This H̃ forms a vector
space. Let us define the inner product of two such
functions as

⟨f, f̄⟩H :=
n∑

i=1

n̄∑
j=1

αiᾱjK(xi, x̄j).

By construction, this inner product satisfies the
kernel reproducing property. Finally let (fn)

∞
n=1

be a Cauchy sequence in H̃ and f(x)
.
=

limn→∞ fn(x). If we extend H̃ with all such f(x),
then we got a reproducing kernel Hilbert space,
denoted by H, due to theorem 2, where ∥f∥H

.
=

limn→∞ ∥fn∥H̃.

2.2 Paley-Wiener Spaces

Paley-Wiener space [2] consists of band-limited
f ∈ L2(R, λ) functions, where λ is the Lebesgue
measure, such that the support of the Fourier
transform of f is included in [−η, η], where η > 0.
We can use the L2 inner product, because it is a
subspace of the L2 space:

⟨f, g⟩H
.
=

∫
R
f(x)g(x) dλ(x)

This is an RKHS, and its reproducing kernel
for x ̸= z ∈ R is:

k(x, z)
.
=

sin(η(x− z))

π(x− z)
and k(x, x)

.
=
η

π
.

2.3 Kernel ridge regression (KRR)

RKHSs are useful for solving classic statisti-
cal problems such as regression. In this problem
we observe n noisy samples of {(xi, yi)}ni=1 input-
output pairs. Suppose that yi = f∗(xi) + wi for

i ∈ [n], where f∗ : X → R is an unknown function
and wi is the i-th measurement noise. We search
for f∗ in the finite form of 1.

If wi = 0 ∀i so there is no noise, the task is to
find f̂ which interpolates the observations. How-
ever there could be infinitely many functions in
H such that f̂(xi) = yi ∀i. We choose the one
which has minimal RKHS norm, because this is
the smoothest f̂ of all possible. This leads to the
optimization problem:

argmin
f∈H

∥f∥H, s.t. f(xi) = yi ∀i. (2)

In the presence of noise f̂ should not fit per-
fectly to the data points, therefore we should in-
troduce some trade-off between the fit and the
Hilbert norm. Hence we only require that the dif-
ferences between the observed and the fitted values
be small. The modification of problem (2) is

argmin
f∈H

∥f∥H, s.t.
1

2n

n∑
i=1

(yi − f(xi))
2 ≤ δ2,

where δ > 0 is a tolerance parameter. Alterna-
tively, we got the same f by solving

min
f∈H

1

2n

n∑
i=1

(yi − f(xi))
2, s.t. ∥f∥H ≤ R,

where R > 0 is an appropriately chosen radius.
Both of these problems are convex and can be re-
formulated (by the Lagrangian duality) as

f̂ = argmin
f∈H

{
1

2n

n∑
i=1

(yi − f(xi))
2 + λn∥f∥2H

}
, (3)

where λn ≥ 0 is a regularization parameter, a func-
tion of δ or R.

One has to choose λn wisely, because this pa-
rameter is responsible for the smoothness of the es-
timated function. If it is too large, then the shape
of the estimate may not be similar enough to the
original function, hence the error will be large. At
the other extreme, when λn is too small, then f can
be very wavy fitting the noise. In practice choosing
the optimal regularization (hyper)parameter can
be done by e.g. cross-validation.

3



Theorem 3 For all λn ≥ 0, the kernel ridge re-
gression estimate can be written as

f̂(·) = 1√
n

n∑
i=1

α̂iK(·, xi),

where the optimal weight vector α̂ ∈ Rn is given
by

α̂ = (K + λnIn)
−1 y√

n
,

where K is the kernel matrix multiplied by 1
n .

2.3.1 Examples

I implemented the KRR algorithm and demon-
strated on some example for both regression and
binary classification. For these I used the Gaussian
kernel:

k(x, z)
.
= exp

(
− 1

2σ
∥x− z∥22

)
,

with σ = the standard deviation of X. For both
example I generated 50 obervations.

1. Regression: X has uniform distribu-
tion on the interval [0; 50], while the
values of Y were calculated as follows:
max

{
−(x−15)2

25 + 50; −(x−35)2

25 + 50
}

plus noise
from standard normal distribution. I chose the
regularization parameter λ to be 0.001. This task
is challenging, because the real regression function
is not in the RKHS in question, but we can see on
figure [2] that the method gives promising result.

Figure 2: Fitted function by KRR for a continuous
sample

2. Binary classification: As in my previous
semester’s work, I generated the points with
Laplace distributions.

• P (Y = 1) = P (Y = −1) = 0.5,

• f(X|Y = 1) = Laplace(location = 2, scale = 1),

• f(X|Y = −1) = Laplace(location = -2, scale = 1).

Here I set λ to 0.05. The results are shown on fig-
ure [3].

Figure 3: Fitted function by KRR for a binary
sample

As I have already mentioned it is important to
choose λ appropriately. In classification, the esti-
mated function should be between −1 and 1. This
can help us to fine-tune λ. Figures 4 and 5 show
the effect of the parameter on the function.

Figure 4: Regression estimate f̂ for different regu-
larization parameters.
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Figure 5: Regression function estimates f̂ for clas-
sification for different regularization parameters.

3 Nonparametric confidence
bands for regression problems

The purpose of this section is to construct con-
fidence bands for the regression function based
on [2]. In this report, I apply a nonparametric
method for this problem, using Paley-Wiener ker-
nel, i.e. compared to the previous semester, there
is no need to define a parameterized model class.
Formally the task is to find a function I(x) =
(I1(x), I2(x)) : D → R× R such that

ν(I)
.
= P(∀x ∈ D : I1(x) ≤ f∗(x) ≤ I2(x)) ≥ 1− α, (4)

where D is the support of the input distribution,
α ∈ (0, 1) is a user-chosen risk probability and ν(I)
is the reliability of the confidence band. With the
following notation:

I .
= {(x, y) ∈ D × R : y ∈ [I1(x), I2(x)]} ,

we can say that ν(I) = P(graphD(f∗)) ⊆ I, where
graphD(f∗)

.
= {(x, f∗(x)) : x ∈ D}.

To build distribution-free, non-asymptotic and
nonparametric confidence bands, the method re-
quires the following assumptions:

(a1) The given input-output pairs (x1, y1) . . .

(xn, yn) ∈ R × R, is an i.i.d. sample, such
that E

[
y2k
]
< ∞ ∀k ∈ [n]. – Being i.i.d. is a

standard assumption, square-integrability is
for estimating the L2 norm of f∗.

(a2) The noise term, εk
.
= yk−f∗(xk) ∀k ∈ [n] has

a symmetric probability distribution about
zero. – This is also a mild requirement.

(a3) The inputs {xk} have uniform distribution
on [0, 1]. – This is the strongest assumption.
It can be relaxed to any known input distri-
bution with a known strictly monotone in-
creasing and continuous cumulative distribu-
tion function F , because then x′k

.
= F (xk) ∼

U(0, 1).

(a4) f∗ is included in a Paley-Wiener space; ∀x ∈
[0, 1] : |f∗(x)| ≤ 1 and f∗ satisfies:∫

R
f2∗ (x)I(x /∈ [0, 1]) dλ(x) ≤ δ0,

where I denotes the indicator function and δ0
is a universal constant. – This assumption is
needed to restrict the model class and to gen-
eralize effectively to unknown data points.

3.1 Noise-free case

First, I consider the problem without noise, i.e.
I assume that yk = f∗(xk) ∀k ∈ [n]. The idea of
the construction:

• assume that there exists a κ stochastic upper
bound for the squared norm of the regression
function,

• then include (x0, y0) in the confidence band
if the function, which simultaneously inter-
polates this new point and the original input-
output pairs, has a squared norm at most κ.

Since in the Paley-Wiener space the norm is
the L2 norm and yk = f∗(xk):

1

n

n∑
k=1

y2
k =

1

n

n∑
k=1

f2
∗ (xk) ≈ E

[
f2
∗ (X)

]
≈ ∥f∗∥22 = ∥f∗∥2H.

Lemma 1 Assuming (a1), (a3), (a4) and that
yk = f∗(xk) ∀k ∈ [n], the following choice of κ:

κ
.
=

1

n

n∑
k=1

y2k +

√
ln(α)

−2n
+ δ0

satisfies for any given α ∈ (0, 1):

P
(
∥f∗∥2H ≤ κ

)
≥ 1− α.
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Suppose that x0 ̸= xk ∀k ∈ [n]. Now the aim is
to find [I1(x0), I2(x0)] according to 4. Let K0 de-
note the Gram matrix of the observations extended
with x0. Then the minimum norm interpolation of
(x, ỹ)

.
= (xk, yk)

n
k=0 ∀y0:

f̃(x) =

n∑
k=0

α̃k(x, xk), where α̃ = K−1
0 ỹ,

and the squared norm:

∥f̃∥2H = α̃⊤K0α̃ = ỹ⊤K0ỹ.

Finally we can calculate the minimum and
maximum value of y0, which satisfies the require-
ments, by solving separately the following opti-
mization problems:

min /max y0

s.t. (y0, y
⊤)K−1

0 (y0, y
⊤)⊤ ≤ κ.

(5)

This is a convex problem, but there is also an an-
alytical solution, which is detailed in table 1.

1. Calculate κ .
= 1

n

∑n
k=1 y

2
k +

√
ln(α)
−2n + δ0.

2. Create the extended Gram matrix:

K0(i+ 1, j + 1)
.
= k(xi, xj) ∀i, j ∈ [n].

3. Determine K−1
0 (exists, because K0 is

PSD) and its following partition:

K−1
0 =

[
c b⊤

b A

]
.

4. Calculate the solutions ymin ≤ ymax of the
quadratic equation a0y20+ b0y0+ c0, where
a0

.
= c, b0

.
= 2b⊤y, c0

.
= y⊤Ay − κ.

5. Return I1(x0)
.
= ymin and I2(x0)

.
= ymax.

If there is no solution, then I(x0)
.
= ∅.

Table 1: Pseudocode for the confidence interval in
the noise-free case

3.1.1 Simulation

I implemented this algorithm and made a nu-
merical demonstration, similar to the one in [2].
The regression function f∗ from which I generated
the observations had the form:

f∗(x) =

20∑
k=1

wk(x, x̄k), (6)

where {xk}20k=1 ∼ U(0, 1) are random input points
and {wk}20k=1 ∼ U(−1, 1) are random weights. Fi-
nally I divided it with the maximum in absolute
value from the [0, 1] interval to restrict the out-
put values to [−1, 1]. I set the other parameters as
follows:

• η = 30 for the Paley-Wiener kernel,

• δ0 = 0,

• α = 0.5 and 0.1,

• n = 10 observation.

The results: the real regression function, the
observations and the two confidence bands are
shown in Figure 6.

Figure 6: Confidence bands for a noise-free regres-
sion function

3.2 Noisy observations

In this subsection I deal with the noisy prob-
lem, so I assume that yk = f∗(xk) + εk ∀k ∈ [n].
The idea of the construction:

• build simultaneous confidence intervals for
some observed points, and use these for
bounding the norm,

• make confidence interval for an unobserved
input, using the upper bound for the norm
and the information, that the previously se-
lected points are in the already calculated
intervals with some probability.
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Confidence intervals for observed points:

For building simultaneous confidence intervals
for some selected points (let the number of it
be d, d ≤ n) I use kernel gradient perturbation
(KGP) like in [2], which is an extension of the Sign-
Perturbed Sums method (I used its variations in
the previous semesters). The KGP method builds
intervals for the RKHS coefficients around a ker-
nel estimation, here around the kernel ridge regres-
sion. Problem 3 can be redefined as follows:

min
1

n
(y −K1θ)

⊤W (y −K1θ) + λθ⊤K2θ, (7)

where K1 ∈ Rn×d is the first d columns of K,
K2 ∈ Rd×d is the first d row of K1 and W is a di-
agonal matrix, which contains the given weights.
This means that all observations are still used to
calculate the error, but we look for θ̃ ∈ Rd.

With the following notations,

Φ =

 1√
n
W

1
2K1

√
λK

1
2
2

 , v =

[
1√
n
W

1
2 y

0d

]
,

the objective of 7 can be reformulated as an ordi-
nary least squares problem, ∥v − Φθ∥2, of which
solution is well known: θ̂ =

(
Φ⊤Φ

)−1
Φ⊤v.

In this case the KGP confidence regions are
the same as the ones produced by SPS. They are
star convex around θ̂, and have ellipsoidal outer
approximations with a given 1 − β ∈ (0, 1) confi-
dence probability:

Θ̂β
.
=

{
θ ∈ Rd : (θ − θ̂)⊤

1

n
Φ⊤Φ(θ − θ̂) ≤ r

}
,

where r is the radius of the confidence ellipsoid.
The computation of the radius can be done by
semi-definite programming [1].

Let q, m integers, such that q
m = β and intro-

duce the following notations:

Rn
.
=

1

n
Φ⊤Φ,

ϵk(θ)
.
= vk − Φ⊤

k θ,

S0(θ)
.
= R

− 1
2

n
1

n

n+d∑
k=1

Φkϵk(θ),

Si(θ)
.
= R

− 1
2

n
1

n

n+d∑
k=1

αi,kΦkϵk(θ),

where αi,k is a random sign for i ∈ [m − 1] and
k ∈ [d], and αi,k = 1 for i ∈ [m − 1] and
k = d + 1, . . . , n. Since ∥S0(θ)∥2 can be rewritten
as (θ− θ̂n)

⊤Rn(θ− θ̂n), based on the SPS method
r will be the q-th largest value of {∥Si(θ)∥2}m−1

i=1 .
Expanding the expression ∥S0(θ)∥2 ≤ ∥Si(θ)∥2

we got:
(θ − θ̂n)

⊤Rn(θ − θ̂n) ≤[
1

n

n+d∑
k=1

αi,kΦk(vk − Φ⊤
k θ)

]⊤

R−1
n

[
1

n

n+d∑
k=1

αi,kΦk(vk − Φ⊤
k θ)

]
=

= θ⊤QiR
−1
n Qiθ − 2θ⊤QiR

−1
n ψi + ψ⊤

i R
−1
n ψi,

where Qi ∈ Rd×d and ψi ∈ Rd are defined as

Qi
.
=

1

n+ d

n+d∑
k=1

αi,kΦkΦ
⊤
k ,

ψi
.
=

1

n+ d

n+d∑
k=1

αi,kΦkvk.

Let z denote the quantity R
1
2
T

n , then we can
calculate maxθ:∥S0(θ)∥2≤∥Si(θ)∥2 ∥Si(θ)∥

2 by solving
the following optimization problem:

max ∥z∥2

s.t. z⊤Aiz + 2z⊤bi + ci ≤ 0,
(8)

where Ai, bi and ci are as follows:

Ai
.
= I −R

− 1
2

n QiR
−1
n QiR

− 1
2
T

n ,

bi
.
= R

− 1
2

n QiR
−1
n (ψi −Qiθ̂d),

ci
.
= −ψ⊤

i R
−1
n ψi + 2θ̂⊤d QiR

−1
n ψi − θ̂⊤d QiR

−1
n Qiθ̂d.

In general problem 8 is not convex, but due
to strong duality its solution is the same as the
solution of its dual, which is convex:

min γ

s.t. λ ≥ 0,[
−I + λAi λbi

λb⊤i λci + γ

]
⪰ 0,

(9)

where “⪰ 0” means positive definiteness.
Let γ∗i denote the solution of 9. Then, choosing

r as the q-th largest γ∗i , it will be true that

P(θ̃ ∈ Θ̂β) ≥ 1− q

m
= 1− β.

Now we can give a lower and an up-
per bound for f∗(xk) ∀k ∈ [d]. Let φk

.
=
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(k(x1, xk), . . . , k(xd, xk))
⊤, hence f∗(xk) = φ⊤

k θ̃.
However, all we know is that Θ̂β includes θ̃ with
some user-chosen probability. Using this informa-
tion we minimize and maximize φ⊤

k θ, such that
θ ∈ Θ̂β . We can calculate these values analytically.
The solutions are

νk
.
= φkθ̂ − (φ⊤

k Pφk)
1
2 ,

µk
.
= φkθ̂ + (φ⊤

k Pφk)
1
2 ,

where P = d·r·(Φ⊤Φ⊤)−1. Thus {[νk, µk]} satisfies

P(∀k ∈ [d] : f∗(xk) ∈ [νk, µk]) ≥ 1− β. (10)

Confidence intervals for unobserved points:

In the noise-free case Lemma 1 gave us an
upper bound for the RKHS norm with probabil-
ity at least 1 − α. Now we know that f2∗ (xk) ≤
max{ν2k , µ2k} ∀k ∈ [d] with probability at least
1− β.

Lemma 2 Assuming (a1), (a3), (a4) and the con-
fidence intervals [νk, µk] fulfill 10 ∀k ∈ [d], then the
following choice of τ :

τ
.
=

1

d

d∑
i=1

max{ν2k , µ2k}+
√
ln(α)

−2d
+ δ0

satisfies for any given α, β ∈ (0, 1):

P(∥f∗∥2H ≤ τ) ≥ 1− α− β.

Suppose that x0 ̸= xk∀k ∈ [d]. Let K0 denote
the extended gram matrix:

K0(i+ 1, j + 1)
.
= k(xi, xj) for i, j = 0, . . . , d.

Now we have to solve separately similar prob-
lems to 5, but in this case we do not know the
exact value of f∗(xk), k ∈ [d], so they will also be
variables from certain intervals:

min /max z0

s.t. (z0, . . . , zd)K−1
0 (z0, . . . , zd)

⊤

ν1 ≤ z1 ≤ µ1, . . . , νd ≤ zd ≤ µd.

(11)

These are convex problems. If there is no solu-
tion, then I(x0)

.
= ∅, otherwise I1(x0)

.
= zmin and

I2(x0)
.
= zmax.

In [3] some refinement for this algorithm are
presented: one can e.g. relax the assumption on
the noise term, by also allowing non-symmetric
noises, introducing a more efficient norm estimat-
ing method and enhancing the construction of
the confidence bands, by replacing the constraints
with tighter ones.

3.2.1 Simulation

I implemented the whole algorithm and tested
how it works in practice. For the convex opti-
mization problems I used a Python package called
CVXPY, which can even solve convex optimiza-
tion problems including semi-definite programs.

The true regression function was the same as
in the noise-free case (6). The noise term, ε had
Laplace distribution with location, µ = 0 and
scale, λ = 0.4 parameters. The rest of the param-
eters were as follows:

• η = 30 for the Paley-Wiener kernel,

• δ0 = 0,

• α = β = 0.25 and 0.05,

• n = 100 and d = 20,

• the regularization parameter λ = 0.01.

The results are summarized in Figure 7: the
true regression function, the KRR estimate of the
regression function, the observations, the selected
points for bounding the RKHS norm and the two
confidence bands are shown.

Figure 7: Confidence bands for noisy observations
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4 Nonparametric confidence
bands for binary classification

One goal of this semester was to reformulate
the previous method (for noisy regression) to solve
binary classification problems. In this case we can-
not use exactly the same algorithm, because the
noise term is not symmetric, so we cannot gener-
ate new samples in the same way as before. We
have a concept for the modification, but how to
put it into practice needs further research.

For simplicity, I present the idea for confidence
level 50% (so only one resampling is required).

We can start the same way: choose d from
the n observations, and as mentioned before, cal-
culate K1 and K2. By solving problem 7, where
y ∈ {−1, 1}, we got an estimate for the true θ, let
it be denoted by θ̂. The new sample for the output
is generated as follows:

ȳ(θ) = sign(K2θ + U),

where U ∈ Rd has a uniform distribution on
[−1, 1]d. Suppose that θ̄(θ) is the estimate of θ
from the new sample. With this notations, the
quantities required for testing θ:

S0(θ)
.
= ∥fθ − f̂KRR(D0)∥2H =

∥∥∥∥∥
d∑

i=1

θik(·, xi)

∥∥∥∥∥
2

H

= θ⊤K2θ + θ̂⊤K2θ̂ − 2θ⊤K2θ̂,

S1(θ)
.
= ∥fθ − f̂KRR(D1(θ))∥2H
= θ⊤K2θ + θ̄⊤(θ)K2θ̄(θ)− 2θ⊤K2θ̄(θ).

The decision whether including fθ in the con-
fidence band: if S1(θ) > S0(θ) then accept θ. This
expression can be expanded in the following way:

θ̂⊤K2θ̂−2θ⊤K2θ̂− θ̄⊤(θ)K2θ̄(θ)+2θ⊤K2θ̄(θ) ≤ 0.

Since we know θ̂ and K2 let a
.
= θ̂⊤K2θ̂ and

b
.
= 2K2θ̂. Furthermore ∀i ∈ [d]:

kxi

.
= (k(xi, x1), . . . , k(xi, xd))

⊤.

Now we can write up the optimization problem 8.

max
θ

= fθ(xi) = θ⊤kxi

s.t. = a− θ⊤b−

sign(K2θ + U)⊤
1√
n
(K2 + λI)−1K2(K2 + λI)−1·

1√
n

sign(K2θ + U)+

2θ⊤K2(K2 + λI)−1 1√
n

sign(K2θ + U) ≤ 0

(12)

It is difficult to solve because of the term
sign(K2θ+U), but we can consider all of the possi-
ble value of this and solve the problems separately.
In practice, this can really increase the running
time, since in this case there are 2d tasks to solve.
Let us introduce the notation

e
.
= (±1, . . . ,±1)⊤ ∈ Rd,

for a certain value of sign(K2θ + U). Now we can
rewrite the constraint of the problem 12, by replac-
ing sign(K2θ+U) with e, and adding that they are
equal. This can be expressed as the product of e⊤

and (K2θ + U) is non-negative, since their signs
are the same. Hence the optimization problem is:

max
θ

= θ⊤kxi

s.t. = ei(θ
⊤kxi + Ui) ≥ 0, ∀i ∈ [d] and

a− θ⊤b−

e⊤
1√
n
(K2 + λI)−1K2(K2 + λI)−1 1√

n
e+

2θ⊤K2(K2 + λI)−1 1√
n
e ≤ 0

(13)
Now these are easier problems, because they can
be solved by linear programming.

The endpoints of 50 % confidence intervals for
the observation xi, i = 1, . . . , d are the minimum
and the maximum value of the solutions of 13.
In the case, when the minimum is lower than -1
and/or the maximum exceeds 1, we can define the
interval endpoints as -1 and 1.

As I mentioned before there are some open
questions about this algorithm. It works in theory,
but its computational demand depends exponen-
tially on the number of observations, which makes
it difficult to apply in practice. Another question,
is it possible to smooth the confidence bands, for
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example by running the algorithm several times,
always choosing different points to construct si-
multaneous confidence intervals, and finally aver-
aging the endpoints of the intervals we got? In the
future, it would be worth working on it further and
finding ways to refine the current version.

5 Conclusions

In the 3 semesters of the project I tried to
capture the uncertainty of different estimates with
binary classification problems as its main objec-
tive. For constructing exact confidence intervals,
regions and bands I used a non-asymptotic and
distribution-free method (and its modifications)
called the Sign-Perturbed Sums, which is based
on a resampling framework.

In this report I presented nonparametric meth-
ods to estimate the regression function and build
confidence bands, based on the theory of Paley-
Wiener reproducing kernel Hilbert spaces. For es-
timating the regression function, I used kernel
ridge regression, and then I constructed confidence
bands around this estimation in noise-free and
noisy regression. I also described an idea to refor-
mulate this method for binary classification prob-
lems. The algorithms provides stochastic guaran-
tees for small sample sizes, and was validated with
numerical simulations in the regression problems.
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