Introduction OO	Preliminaries 00000	Confidence bands for regression	Confidence bands for binary classification	Conclusions O

Nonparametric confidence bands for supervised learning

Author: Noémi Takács

Supervisor: Ambrus Tamás

SZTAKI, ELTE

Math Project ELTE, January 2025

Introduction 00	Preliminaries	Confidence bands for regression	Confidence bands for binary classification	Conclusions O

Table of contents

1 Introduction

- 2 Preliminaries
- 3 Confidence bands for regression
 - Noise-free case
 - Noisy case
- 4 Confidence bands for binary classification

5 Conclusions

Confidence bands for binary classification

Topic of the project and the previous works

Binary classification and regression problems

- \rightarrow estimate the regression function
- ightarrow construct confidence sets around the estimation

First semester:

- confidence intervals for mean estimates
- preparation for binary classification

Second semester:

- estimate the regression function (f_{*}) in binary classification
- construct parameterized confidence regions around the estimation

Figure: Predicting bank churn using lognormal distribution family

Introduction O	Preliminaries	Confidence bands for regression	Confidence bands for binary classification	Conclusions O
Current	study			

Nonparametric methods

- \rightarrow reproducing kernel Hilbert spaces
- \rightarrow kernel ridge regression

Confidence bands for regression problems

- \rightarrow noise-free case
- \rightarrow noisy case

Confidence bands for binary classification

 $\rightarrow\,$ an idea to reformulate the algorithm used for the regression with noisy observations

Confidence bands for regression

Confidence bands for binary classification

Sign-Perturbed Sums (SPS)

00000

Main idea of the algorithm

- generate alternative outputs for the original inputs (perturb the residuals)
- compare the original \mathcal{D}_0 and the alternative samples $\{\mathcal{D}_i\}_{i=1}^{m-1}$ with a ranking function
- \blacksquare construct confidence set based on the rank of \mathcal{D}_0

Advantages:

- mild statistical assumptions
- distribution-free
- non-asymptotic
- exact confidence sets

Confidence bands for regression

Confidence bands for binary classification

Reproducing Kernel Hilbert Spaces (RKHS)

Let \mathcal{H} be a Hilbert space $\rightarrow (\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$

Preliminaries

We say that a \mathcal{K} kernel has the reproducing property for the \mathcal{H} Hilbert space, if for any $x \in \mathcal{X}$, function $\mathcal{K}(\cdot, x)$ belongs to \mathcal{H} , and satisfies

$$\langle f, \mathcal{K}(\cdot, x) \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}.$$

Especially:

$$\langle \mathcal{K}(\cdot, x), \mathcal{K}(\cdot, z) \rangle_{\mathcal{H}} = \mathcal{K}(x, z) \text{ for all } x, z \in \mathcal{X}.$$

Theorem

Given any positive definite kernel function \mathcal{K} , there is a unique Hilbert space \mathcal{H} in which the kernel satisfies the reproducing property. It is called the reproducing kernel Hilbert space associated with \mathcal{K} .

Paley-Wiener spaces:

$$k(x,z) \doteq rac{\sin(\eta(x-z))}{\pi(x-z)}$$
 and $k(x,x) \doteq rac{\eta}{\pi}$.

 $\rightarrow\,$ we can use the \mathcal{L}^2 inner product

Confidence bands for regression

Confidence bands for binary classification

Kernel Ridge Regression (KRR)

Preliminaries

 $y_i = f^*(x_i) + \varepsilon_i$ We search for f^* in the finite form:

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i \mathcal{K}(\cdot, x_i)$$

Noise-free case:

Interpolate the observations \rightarrow infinitely many $\hat{t} \rightarrow$ choose the one with minimal RKHS norm (smoothest) \rightarrow solve the optimization problem:

$$\arg\min_{f\in\mathcal{H}} ||f||_{\mathcal{H}}, \quad \text{s.t. } f(x_i) = y_i \ \forall i.$$

Noisy case:

Trade-off between the fit and the Hilbert norm \rightarrow solve the optimization problem:

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n \|f\|_{\mathcal{H}}^2 \right\},\$$

where $\lambda_n \geq 0$ is a regularization parameter.

Preliminaries

Examples for KRR and the choice of λ I.

Gaussian kernel:

00000

$$k(x,z) \doteq \exp\left(-\frac{1}{2\sigma}\|x-z\|_2^2\right),$$

Regression:

Figure: Fitting via KRR for continuous sample, $\lambda = 0.001$

Figure: KRR estimates with different regularization parameters in rearession

Examples for KRR and the choice of λ II.

Binary classification:

00000

Figure: Fitting via KRR for binary sample, $\lambda = 0.05$

Figure: KRR estimates with different regularization parameters in binary classification

Nonparametric confidence bands for regression problem

Experiments based on article [2].

 \rightarrow Paley-Wiener kernel

The task: find a function $I(x) = (I_1(x), I_2(x)) : \mathcal{D} \to \mathbb{R} \times \mathbb{R}$

s.t.
$$\nu(I) \doteq \mathbb{P}(\forall x \in \mathcal{D} : I_1(x) \le f_*(x) \le I_2(x)) \ge 1 - \alpha$$

Assumptions:

- The given input-output pairs $(x_1, y_1) \dots (x_n, y_n) \in \mathbb{R} \times \mathbb{R}$, is an i.i.d. sample, such that $\mathbb{E}[y_k^2] < \infty \ \forall k \in [n]$.
- The noise term, $\varepsilon_k \doteq y_k f_*(x_k) \ \forall k \in [n]$ has a symmetric probability distribution about zero.
- The inputs $\{x_k\}$ have uniform distribution on [0, 1].
- f_* is included in a Paley-Wiener space; $\forall x \in [0, 1] : |f_*(x)| \le 1$ and f_* satisfies:

$$\int_{\mathbb{R}} f_*^2(x) \mathbb{I}(x \notin [0,1]) \ d\lambda(x) \leq \delta_0,$$

where $\mathbb I$ denotes the indicator function and δ_0 is a universal constant.

Introduction 00	Preliminaries	Confidence bands for regression ○●○○○	Confidence bands for binary classification	Conclusions O

Noise-free case

Construction basics for noise-free regression

No noise $\rightarrow y_k = f_*(x_k) \ \forall k \in [n]$

Idea of the construction:

- Assume that there exists a κ stochastic upper bound for the squared norm of the regression function.
 - $\rightarrow~$ Since we can use the \mathcal{L}^2 norm:

$$\frac{1}{n}\sum_{k=1}^{n}y_{k}^{2}=\frac{1}{n}\sum_{k=1}^{n}f_{*}^{2}(x_{k})\approx\mathbb{E}\left[f_{*}^{2}(X)\right]\approx\|f_{*}\|_{2}^{2}=\|f_{*}\|_{\mathcal{H}}^{2}.$$

 \rightarrow Lemma:

with
$$\kappa \doteq \frac{1}{n} \sum_{k=1}^{n} y_k^2 + \sqrt{\frac{\ln(\alpha)}{-2n}} + \delta_0$$
, $\mathbb{P}\left(\|f_*\|_{\mathcal{H}}^2 \le \kappa \right) \ge 1 - \alpha$.

- **2** Then include (x_0, y_0) in the confidence band if the function, which simultaneously interpolates this new point and the original input-output pairs, has a squared norm at most κ .
 - $\rightarrow\,$ Finally, there are 2 (convex) optimization problems to solve (which also have analytical solutions):

 $min / max y_0$

s.t. $(y_0, y^{\top}) K_0^{-1} (y_0, y^{\top})^{\top} \leq \kappa$.

Introduction	Preliminaries 00000	Confidence bands for regression	Confidence bands for binary classification	Conclusions O
Noise-free case				

Simulation for noise-free regression

The true regression function:

$$f_*(x) = \sum_{k=1}^{20} w_k(x, \bar{x}_k)$$

divided by $\max_{x \in [0,1]} f_*(x)$, where $\{x_k\}_{k=1}^{20} \sim U(0,1)$ are random input points and $\{w_k\}_{k=1}^{20} \sim U(-1,1)$ are random weights.

The other parameters:

• $\eta = 30$ for the Paley-Wiener kernel,

- α = 0.5 and 0.1,
- n = 10 observation.

Figure: Confidence bands for a noise-free regression function

Introduction	Preliminaries 00000	Confidence bands for regression	Confidence bands for binary classification	Conclusions O
Noisy case				

Construction basics for noisy regression

Noisy observations $\rightarrow y_k = f_*(x_k) + \varepsilon_k \ \forall k \in [n]$

Idea of the construction:

- Build simultaneous confidence intervals for some observed points (select d, $d \le n$), and use these for bounding the norm.
 - $\rightarrow\,$ with Kernel Gradient Perturbation (KGP) (extension of the SPS) build confidence intervals for the RKHS coefficients around the KRR estimation:

$$\mathbb{P}(\forall k \in [d] : f_*(x_k) \in [\nu_k, \mu_k]) \ge 1 - \beta.$$

 \rightarrow Lemma:

with
$$\tau \doteq \frac{1}{d} \sum_{i=1}^{d} \max\{\nu_k^2, \mu_k^2\} + \sqrt{\frac{\ln(\alpha)}{-2d}} + \delta_0, \quad \mathbb{P}(\|f_*\|_{\mathcal{H}}^2 \le \tau) \ge 1 - \alpha - \beta.$$

Make confidence interval for an unobserved input, using the upper bound for the norm and the information, that the previously selected points are in the already calculated intervals with some probability.

 \rightarrow The (convex) optimization problems:

r

nin / max
$$z_0$$

s.t. $(z_0, \dots, z_d) K_0^{-1} (z_0, \dots, z_d)^\top \leq \tau$
 $\nu_1 \leq z_1 \leq \mu_1, \dots, \nu_d \leq z_d \leq \mu_d.$

Introduction 00	Preliminaries	Confidence bands for regression ○○○○●	Confidence bands for binary classification	Conclusions O
Noisy case				

Simulation for noisy regression

The true regression function is the same as before. The noise term:

 $\varepsilon \sim Laplace(location = 0, scale = 0.4)$

The other parameters:

- **•** $\eta = 30$ for the Paley-Wiener kernel,
- δ₀ = 0,
- $\alpha = \beta = 0.25$ and 0.05,
- *n* = 100 and *d* = 20
- *λ* = 0.01.

Figure: Confidence bands for a noisily observed regression function

Challenges in binary classification compared to regression

Binary observations $\rightarrow y_k \in \{-1, 1\} \ \forall k \in [n]$

If confidence interval endpoints are out of $[-1, 1] \rightarrow$ define them as -1 and/or 1.

Question:

The noise term is not symmetric \rightarrow cannot generate new samples in the same way.

Idea for new sample generation:

 $\bar{y}(\theta) = \operatorname{sign}(K\theta + U),$

where $U \sim U([-1, 1]^d)$.

Problem:

This term appears (multiple times) in the constraint of the optimization task to compute confidence intervals built around the observed points.

Introduction	Preliminaries 00000	Confidence bands for regression	Confidence bands for binary classification ○●	Conclusions O
Solution	idea			

Idea to avoid the signum function:

Consider all possible values.

$$e \doteq (\pm 1, \dots, \pm 1)^{\top} \in \mathbb{R}^d$$

Replacing implies adding to the constraints:

$$e_i(\theta^{\top}k_{x_i}+U_i)\geq 0, \quad \forall i\in [d],$$

where $k_{x_i} \doteq (k(x_i, x_1), \dots, k(x_i, x_d))^\top$

- $\rightarrow\,$ easier to solve, but
- $\rightarrow 2^d$ task (increasing exponentially with the number of observations)

Introduction 00	Preliminaries 00000	Confidence bands for regression	Confidence bands for binary classification	Conclusions

Conclusions

The algorithm provides stochastic guarantees also for small sample sizes

ightarrow validated with numerical simulations in regression problems

Questions and improvement opportunities in binary classification:

- further investigation for practical applicability
- find a way to construct confidence bands with less computational demand
- make smoother bands, e.g. with averaging

References

Csáji, B. Cs., Campi, M. C., & Weyer, E. (2015).Sign-Perturbed Sums: A New System Identification Approach for Constructing Exact Non-Asymptotic Confidence Regions in Linear Regression Models. IEEE Transactions on Signal Processing, 63(1), 169-181. https://doi.org/10.1109/tsp.2014.2369000 Csáji, B. Cs., & Horváth, B. (2022).Nonparametric, Nonasymptotic Confidence Bands With Paley-Wiener Kernels for Band-Limited Functions. IEEE Control Systems Letters. 6. 3355-3360. https://doi.org/10.1109/lcsvs.2022.3185143 Csáji, B. Cs., & Horváth, B. (2023). Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands. IFAC-PapersOnLine, 56(2), 10357-10362. https: //doi.org/10.1016/j.ifacol.2023.10.1047 Tamás, A., & Csáji, B. Cs. (2020).Sztochasztikus garanciák bináris klasszifikációhoz. Alkalmazott Matematikai Lapok, 37, 365-379. https://doi.org/10.37070/ AML.2020.37.2.16 Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University Press.

Thank you for your attention!