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Topic of the project and the previous works

Binary classification and regression problems

→ estimate the regression function

→ construct confidence sets around the estimation

First semester:
confidence intervals for mean estimates

preparation for binary classification

Second semester:
estimate the regression function (f∗) in
binary classification

construct parameterized confidence
regions around the estimation

Figure: Predicting bank churn using lognormal distribu-
tion family
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Current study

Nonparametric methods
→ reproducing kernel Hilbert spaces
→ kernel ridge regression

Confidence bands for regression problems
→ noise-free case
→ noisy case

Confidence bands for binary classification
→ an idea to reformulate the algorithm used for the regression with noisy

observations
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Sign-Perturbed Sums (SPS)

Main idea of the algorithm

generate alternative outputs for the original inputs (perturb the residuals)

compare the original D0 and the alternative samples {Di}m−1
i=1 with a ranking

function

construct confidence set based on the rank of D0

Advantages:
mild statistical assumptions

distribution-free

non-asymptotic

exact confidence sets
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Reproducing Kernel Hilbert Spaces (RKHS)

Let H be a Hilbert space → (H, ⟨·, ·⟩H)

We say that a K kernel has the reproducing property for the H Hilbert space, if for any
x ∈ X , function K(·, x) belongs to H, and satisfies

⟨f ,K(·, x)⟩H = f (x) ∀f ∈ H.

Especially:
⟨K(·, x),K(·, z)⟩H = K(x , z) for all x , z ∈ X .

Theorem
Given any positive definite kernel function K, there is a unique Hilbert space H in
which the kernel satisfies the reproducing property. It is called the reproducing kernel
Hilbert space associated with K.

Paley-Wiener spaces:

k(x , z) .
=

sin(η(x − z))
π(x − z)

and k(x , x) .
=

η

π
.

→ we can use the L2 inner product
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Kernel Ridge Regression (KRR)

yi = f∗(xi ) + εi
We search for f∗ in the finite form:

f (·) =
n∑

i=1

αiK(·, xi )

Noise-free case:
Interpolate the observations → infinitely many f̂ → choose the one with minimal RKHS
norm (smoothest) → solve the optimization problem:

arg min
f∈H

∥f∥H, s.t. f (xi ) = yi ∀i.

Noisy case:
Trade-off between the fit and the Hilbert norm → solve the optimization problem:

f̂ = arg min
f∈H

{
1

2n

n∑
i=1

(yi − f (xi ))
2 + λn∥f∥2

H

}
,

where λn ≥ 0 is a regularization parameter.
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Examples for KRR and the choice of λ I.

Gaussian kernel:

k(x , z) .
= exp

(
−

1
2σ

∥x − z∥2
2

)
,

Regression:

Figure: Fitting via KRR for continuous sample, λ = 0.001 Figure: KRR estimates with different regularization param-
eters in regression
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Examples for KRR and the choice of λ II.

Binary classification:

Figure: Fitting via KRR for binary sample, λ = 0.05 Figure: KRR estimates with different regularization param-
eters in binary classification
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Nonparametric confidence bands for regression problem

Experiments based on article [2].

→ Paley-Wiener kernel

The task: find a function I(x) = (I1(x), I2(x)) : D → R× R

s.t. ν(I) .
= P(∀x ∈ D : I1(x) ≤ f∗(x) ≤ I2(x)) ≥ 1 − α

Assumptions:
The given input-output pairs (x1, y1) . . . (xn, yn) ∈ R× R, is an i.i.d. sample, such
that E

[
y2

k

]
< ∞ ∀k ∈ [n].

The noise term, εk
.
= yk − f∗(xk ) ∀k ∈ [n] has a symmetric probability distribution

about zero.

The inputs {xk} have uniform distribution on [0, 1].

f∗ is included in a Paley-Wiener space; ∀x ∈ [0, 1] : |f∗(x)| ≤ 1 and f∗ satisfies:∫
R

f 2
∗ (x)I(x /∈ [0, 1]) dλ(x) ≤ δ0,

where I denotes the indicator function and δ0 is a universal constant.
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Noise-free case

Construction basics for noise-free regression

No noise → yk = f∗(xk ) ∀k ∈ [n]

Idea of the construction:
1 Assume that there exists a κ stochastic upper bound for the squared norm of the

regression function.
→ Since we can use the L2 norm:

1
n

n∑
k=1

y2
k =

1
n

n∑
k=1

f 2
∗(xk ) ≈ E

[
f 2
∗(X)

]
≈ ∥f∗∥2

2 = ∥f∗∥2
H.

→ Lemma:

with κ
.
=

1
n

n∑
k=1

y2
k +

√
ln(α)

−2n
+ δ0, P

(
∥f∗∥2

H ≤ κ
)

≥ 1 − α.

2 Then include (x0, y0) in the confidence band if the function, which simultaneously
interpolates this new point and the original input-output pairs, has a squared norm
at most κ.
→ Finally, there are 2 (convex) optimization problems to solve (which also have analytical

solutions):
min /max y0

s.t. (y0, y⊤)K−1
0 (y0, y⊤)⊤ ≤ κ.
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Noise-free case

Simulation for noise-free regression

The true regression function:

f∗(x) =
20∑

k=1

wk (x , x̄k )

divided by maxx∈[0,1] f∗(x), where
{xk}20

k=1 ∼ U(0, 1) are random input
points and {wk}20

k=1 ∼ U(−1, 1) are
random weights.

The other parameters:

η = 30 for the Paley-Wiener kernel,

δ0 = 0,

α = 0.5 and 0.1,

n = 10 observation.

Figure: Confidence bands for a noise-free regression func-
tion
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Noisy case

Construction basics for noisy regression

Noisy observations → yk = f∗(xk ) + εk ∀k ∈ [n]

Idea of the construction:
1 Build simultaneous confidence intervals for some observed points (select d ,

d ≤ n), and use these for bounding the norm.
→ with Kernel Gradient Perturbation (KGP) (extension of the SPS) build confidence

intervals for the RKHS coefficients around the KRR estimation:

P(∀k ∈ [d ] : f∗(xk ) ∈ [νk , µk ]) ≥ 1 − β.

→ Lemma:

with τ
.
=

1
d

d∑
i=1

max{ν2
k , µ

2
k} +

√
ln(α)
−2d

+ δ0, P(∥f∗∥2
H ≤ τ) ≥ 1 − α − β.

2 Make confidence interval for an unobserved input, using the upper bound for the
norm and the information, that the previously selected points are in the already
calculated intervals with some probability.
→ The (convex) optimization problems:

min /max z0

s.t. (z0, . . . , zd )K
−1
0 (z0, . . . , zd )

⊤ ≤ τ

ν1 ≤ z1 ≤ µ1, . . . , νd ≤ zd ≤ µd .
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Noisy case

Simulation for noisy regression

The true regression function is the same
as before. The noise term:

ε ∼ Laplace(location = 0, scale = 0.4)

The other parameters:

η = 30 for the Paley-Wiener kernel,

δ0 = 0,

α = β = 0.25 and 0.05,

n = 100 and d = 20

λ = 0.01.
Figure: Confidence bands for a noisily observed regression

function
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Challenges in binary classification compared to regression

Binary observations → yk ∈ {−1, 1} ∀k ∈ [n]

If confidence interval endpoints are out of [−1, 1] → define them as -1 and/or 1.

Question:
The noise term is not symmetric → cannot generate new samples in the same way.

Idea for new sample generation:

ȳ(θ) = sign(Kθ + U),

where U ∼ U([−1, 1]d ).

Problem:
This term appears (multiple times) in the constraint of the optimization task to compute
confidence intervals built around the observed points.
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Solution idea

Idea to avoid the signum function:
Consider all possible values.

e .
= (±1, . . . ,±1)⊤ ∈ Rd

Replacing implies adding to the constraints:

ei (θ
⊤kxi + Ui ) ≥ 0, ∀i ∈ [d ],

where kxi
.
= (k(xi , x1), . . . , k(xi , xd ))

⊤

→ easier to solve, but

→ 2d task (increasing exponentially with the number of observations)
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Conclusions

The algorithm provides stochastic guarantees also for small sample sizes

→ validated with numerical simulations in regression problems

Questions and improvement opportunities in binary classification:
further investigation for practical applicability

find a way to construct confidence bands with less computational demand

make smoother bands, e.g. with averaging
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