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1 Introduction

The topic of my project is related to the automotive industry and is done in a fellowship
program at Bosch. In automotive manufacturing, it is critically important to detect both
design flaws and faulty components. One approach is to listen to the noise: undesirable
noise in a car component can be used to infer various manufacturing or design defects. The
aim of the project is to develop machine learning models to localize the source of noise from
measurements of vibrations in order to locate the errant parts. To get signals for modeling
purposes, we excited parts with an automatic hammer and recorded time signals at several
points. The noise is measured with a laser vibrometer, resulting in a signal of velocities as a
function of time.

In this report, several approaches are presented to the above problem, discussing modeling
choices, metrics of error, model performances, and also different scopes of generalizations.

2 Approach

The approach is to find out where the measurement was made. This is because it is equivalent
to localizing the excitation. We went around this using two methods:

e A regression approach to estimate distance from the excitation point
e Discretizing by dividing the component into parts

The first method aims to (relatively) precisely determine the location of the measurement
point. In this case, the error-measuring metric is the Euclidean distance. The second ap-
proach may be somewhat more practical. However, the problem here arises from merely
considering how accurately the model is able to predict the label of the range. In this sce-
nario, we might also count as an error when the model misclassifies a point that was located
on the boundary of the range.



3 Formal description of the task

Since our task in both approaches is to predict where the measurements have been taken, we
need to take a coordinate system. The origin of this coordinate system should be placed at
one of the corners of the plate or part, and in addition a positive x- and y-direction should
be taken. This is an absolute system, after taking them together with the measurement
and excitation points, then retaining them for each measurement. Both the excitation and
measurement points are stored with coordinates, plus they have a point index assigned to
them by the measurement software.

In case of coordinate estimation of a measurement point, it is given what we are referencing
and what will provide the labels for our supervised learning task. But when we discretize,
we need some kind of system by which to group the points.

To do this, we have several built-in algorithms in Python, such as K-means or Gaussian
Mixture, both of which divide the points into a fixed number of clusters based on the planar
coordinates. Now let us move on to possible generalizations.

4 Generalizations

e Generalization over different forces (measured in Newton)
We investigated whether the models can generalize between different forces. The result
was that they can if they have to predict from smaller forces to bigger ones. We got
much different accuracy scores when we used nearest neighbor interpolation and simple
feedforward neural networks (this will be shown on the next page).

e Generalization over different excitation shapes
Models are not too sensitive to this, so this generalization seems to be solved.

¢ Generalization over distance prediction from different excitation points
A harder instance, models only achieve from 1 cm to 7 cm mean error.

e Generalization over distance estimation on different automotive parts
It looks almost impossible to solve. Models had from 18 cm to 77 ¢m mean error.

¢ Generalization by finding an appropriate embedding
It is thought to be a valid approach to use self-supervision to find a proper embedding.
It is by exploiting the inner structure of time signals to predict both discrete clusters
and distances.
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Figure 1: Accuracy matrices with different generalizations, interpolation and neural network

In Figure 1 it can be seen that the neural network outperforms interpolation in most cases,
and the matrices also reveal that the models generalize better from lower forces to higher
forces than vice versa.

5 Elements of the measurement setup
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Figure 2: Schematic figure of the measurement setup



Figure 2 depicts the measurement setup. As the hammer strikes the component, a wave
is generated. The laser vibrometer calculates from the temporal changes in the laser beam
how fast the component vibrates at a given point at each moment in time. These temporal
signals are later utilized to solve both classification to predict the label of the part of the
measurement point, and regression tasks to estimate distance.

6 Categorization

There are four categorization aspects for the data.

e Excitation shape: There are various excitation shapes, including single, double, triple
and multiple, among others.

e Force applied

e Direction of the excitation: This is a very simple one, because it has only two
versions: +Z7 and -Z depending on the direction in which the hammer strikes in the
coordinate system.

e Location of the excitation: This aspect serves the purpose of logically associating
the estimated distances with the points of excitation.
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Figure 3: Schematic figures of single and double hit

In Figure 3 we can see the schematic figures of single and double hit. The single and double
hit phenomena (or alternatively, single and double impact) refer to scenarios where, in the
case of a single hit, the body is struck by just one excitation, whereas in the case of a double
hit, it is struck twice in a short period. This occurs, for example, in our measurement setup
when the component rebounds and strikes the hammer again.



7 The prediction

7.1 Distance estimate by interpolation

The current main estimation method, interpolation, employs a nearest neighbor approach.
This method assumes that closely located measurement points will yield similar time signals.
It utilizes Euclidean distances between points in a matrix to assign values to new points.
Initially, there was a notable improvement in accuracy, with average error dropping from 5
cm to 1 ecm. Though some challenges have arisen, this progress indicates a promising new
direction.

7.2 Triangulation

This method utilizes three excitation points, each estimating the distance to a given mea-
surement point. The predicted measurement point is determined by the common intersection
of the circles drawn from these excitation points. While theoretically sound, numerical errors
and their accumulation can lead to deviations. To address this, a straightforward approach
was adopted: if circles should intersect but do not due to distance estimate errors, the mid-
point between the intersections of the segments connecting their centers with the circles will
be the predicted point. This method ensures robustness by providing estimates even in cases
where direct intersection is not feasible, initially discarded to avoid ambiguity.

7.3 Working with triggered signals

At this point, it should also be mentioned that we abandoned the idea of working with the
whole time series, as we realized that the resting phase at the beginning contains a lot of
information about the distance from the excitation point, but this is due to the fact that the
measurements were always made in a predefined time window. In reality, the excitation will
hit the sensor unexpectedly, so we have switched to working with triggered signals, which
are generated by cutting off the portion of the signal at the beginning that does not reach a
given level in absolute value (usually set to 0.005).

7.4 Discretization

This approach involves decomposing the component into clusters based on x-y coordinates.
Future adaptations aim to discretize potential error sources into clusters. The program
code resembles previous distance estimation methods but operates on cluster labels instead.
A strong correlation between the number of clusters (varied between 3 and 8) and model
accuracy was observed.



8 Models and their performance

8.1 Triangulation

Method Min error Max error Mean error Std Number of estimations Under 0.5 cm
Interpolation 0.0 0.38 0.003 0.03 174 172
Pol. regression 4.58 - 1077 0.0016 0.0002 0.0004 542 542

Table 1: Performance of triangulation models

The minimum error, maximum error, mean error, and standard deviation (std) are all mea-
sured in meters. It is important to note that the second set of measurements is significantly
superior to the first. This improvement stems from its application to automotive parts, which
are smaller in scale compared to the metal sheet. As a result, all the data exist within a
smaller range, contributing to a more precise assessment.

8.2 Cluster prediction

As it was mentioned before, a correlation was observed between the number of clusters and the
accuracy score. However, it is evident that this model struggles to generalize across distinct
excitation points and various automotive parts. This limitation arises from the diverse signal
shapes generated by different excitation points and the considerably varied discretizations
present in different automotive components.

9 Feature engineering

In this section, we will delve into the concept of feature engineering, a critical step in the de-
velopment of effective machine learning models. Feature engineering involves the extraction,
selection, and transformation of key attributes from raw data to create meaningful inputs for
machine learning algorithms. Using relevant features, we can enhance the predictive power
and efficiency of our models.

We will specifically compare feature-based models with those that rely on full- or partial sig-
nal shapes. While signal-based approaches directly utilize raw or minimally processed data,
feature-based models leverage carefully crafted characteristics that summarize the underlying
patterns in the data. This distinction is particularly important when dealing with complex or
high-dimensional datasets, as feature engineering often helps reduce dimensionality, improve
interpretability, and reduce computational requirements.

Furthermore, we will examine the effectiveness of feature-based models in various applica-
tions. These models often demonstrate superior performance, especially when the chosen
features capture domain-specific knowledge or highlight critical trends within the data. By
emphasizing feature-based approaches, we can achieve a balance between model accuracy
and computational efficiency, making them a preferred choice in many scenarios.

Through this discussion, we aim to highlight the advantages and challenges of feature-based
modeling and how it contributes to the broader landscape of data-driven problem-solving.



9.1 Features of the signal

Time signals can be described by a wide range of numerical properties, each capturing differ-
ent aspects of their behavior. Among these features, we selected those that show the strongest
correlation with distance, as they are likely to provide the most meaningful insights for our
analysis. Let us take a closer look at these selected features.

e Trigger position: This refers to the point in time when the signal exceeds a certain
threshold in absolute value (when its absolute velocity becomes greater). This threshold
value was empirically selected and is set to 0.005 m/s. The correlation of this feature
with distance is remarkably strong; however, it does not exhibit significant variance
across signals, typically ranging between 3000 and 3070.

e Trigger velocity: This refers to the absolute velocity at the trigger position.

e Decay position: This feature is designed to describe where the signal ends. In other
words, it identifies the position—or, if you prefer, the point in time—beyond which
nothing relevant happens. Defining this feature accurately proved challenging, as a
specific calculation rule often failed to produce reliable results under different measure-
ment configurations.

e Decay velocity: This refers to the absolute velocity at the decay position.

e Maximal velocity: This feature apparently refers to the maximal velocity in absolute
value. It shows a negative correlation with distance, as expected, although there are
exceptions to this as well.

e Delta: This is the difference of decay- and trigger position. This feature is intended
to describe the duration of the signal.

e Total displacement: Since we have a velocity vs. time signals, total displacement
can be obtained as an integral. This feature represents the value of the integral taken
over the section between the trigger- and the decay position.

9.2 Envelope curve

The determination of the decay position often faced challenges and could not be generalized
across multiple measurement configurations. For example, it could not be defined in the same
way as the trigger position, such as when the signal’s absolute value drops below a certain
threshold. Therefore, we adopted a new method: we fitted an envelope to the signal and
examined when its slope falls below a specific threshold. At that point, we considered it the
limit up to which the signal should be analyzed.



Decay position determined by the slope of the envelope
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Figure 4: Comparison of decay positions

In Figure 4 we can see the difference between the descriptiveness of decay positions defined
in different ways. It is can be seen that with the first method, where the decay position
is determined by the slope of the envelope, the section of the signal to be analyzed can be
described much more effectively.

10 Decision trees

Decision trees are among the simplest machine learning models, as they rely solely on less-
than, greater-than, or equal-to comparisons. They can be used for both classification and
regression tasks, which is exactly what we did. The extracted features were fed into a decision
tree classifier and regressor, and we evaluated how accurately they performed.
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Figure 5: Decision tree regressor and classifier performances

It can be observed that in the case of regression, the error roughly follows an exponential dis-
tribution. We also conducted further experiments to test the models, specifically by varying
the number of features used.

e Three features: We first experimented with three features: the trigger position, the
decay position, and the delta.

e Four features: Next, we experimented with four features: trigger velocity, maximal
velocity, decay velocity, and delta.

e All features: Finally, we also tested the case where we used all the features along
with the total displacement.

The evaluations show that the model based on the fewest features generally performed the
best. However, this result could be misleading, as the model with three features used the
trigger position, which is not a valid piece of information. In reality, we will not know when
a measurement begins, as the sensor will continuously or record signals at specific intervals.

11 Convolutional neural networks

We also examined how distance estimation works with convolutional neural networks. To do
this, we identified the trigger position of the signals and then took 10,000 samples from each
signal starting from that point. These samples were used as input for a convolutional neural
network, which consisted of three convolutional layers and one linear layer.



11.1 Hyperparameter tuning

Here, it was possible to adjust the kernel sizes of the different convolutional layers, the output
sizes, the size of the output of the linear layer, the learning rate, the number of epochs and
the search mode (grid search and random search). The evaluations show that the highest
accuracy is achieved when the size of the convolutional layers increases, the learning rate is
small (e.g. 0.01), and the number of epochs is not too high (e.g. 10). Mean absolute error
was about 0.01 m.

12 Conclusion and next steps

In this project, we explored the challenge of localizing the source of noise in automotive
components using machine learning methods. Through both regression and classification
approaches, we demonstrated the potential of models to predict measurement points with
varying degrees of accuracy. While methods such as triangulation and interpolation proved
effective in estimating distances under certain conditions, challenges arose when attempting
to generalize across different excitation forces, shapes, and components.

Feature engineering played a crucial role in enhancing model performance, as carefully se-
lected features provided meaningful insights into the underlying patterns of the time signals.
Despite the progress, limitations in generalization, particularly for diverse automotive parts,
highlight the need for further research. Future work could focus on self-supervised learning
techniques and advanced embeddings to improve model robustness and adaptability. Overall,
the results of this study offer valuable contributions to the application of machine learning
in the automotive industry, paving the way for more accurate and efficient defect detection
systems.

In the near future, we will also conduct 3D measurements, using a shaker for excitation
instead of the automatic hammer. These data can later be used to build multi-output mod-
els capable of identifying not only the type of component but also the type of rattling or,
potentially, multiple rattling scenarios.
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