
Efficient path planning algorithms for multilayered
traversability maps

Author: Domonkos Rózsay, Supervisor: Csaba Sidló

Dec 2024

Previous Work and Current Status
I continued my work from the previous semester with the ILAB research group at
HUN-REN SZTAKI. My primary objective was to discover an efficient way to represent
multilayered maps and develop algorithms capable of solving the pathfinding problem
on these representations.

Previously, I implemented the A∗ algorithm on a single-layer map represented as a 0-1
grid. While effective for basic maps, it proved insufficient for realistic, multilayered
representations. This semester, I explored further algorithms and data structures to
address the limitations. I implemented and tested A∗, Theta* (Θ∗) and the basics of vis-
ibility graph approaches. "Anytime Weighted A∗" (AWA*), the "Continuous Dijkstra"
and some other ideas were tested to analyze their trade-offs in various scenarios.

1 Rasterized Map Representation and A∗ Algorithm
We assume raster images as map layers, defining traversable and inaccessible areas.
These are treated as weighted square grids, where cells represent nodes, and there are
4 or 8 dirrections of movement with costs scaling to the cell weight.

A∗ extends Dijkstra’s algorithm by incorporating a heuristic function h(n), guiding the
search towards the goal. It selects nodes based on f(n) = g(n) + h(n), where g(n) is
the cost from the start to node n. To ensure optimality, h(n) must be admissible:

h(n) ≤ h∗(n) ∀n,

where h∗(n) is the true cost to the goal. For efficiency, h(n) should also be consistent:

h(N) ≤ c(N,P ) + h(P ), for all successors P of N.

1



Example rasterized layers of the original test data

Admissibility can be derived from consistency; however, the reverse does not hold true.
For an admissible but not consistent heuristic, it can take more time than a normal
Dijkstra to find the path.

0 20 40 60 80

0

20

40

60

80

0 200 400 600 800

0

200

400

600

800

0 200 400 600 800

0

200

400

600

800

Figure 1: Path comparison: 4-way movement vs. diagonal movement with and without
admissible heuristics.

During implementation, I introduced weight scaling for blocked cells. Assigning high
weights (e.g., 1000) to inaccessible cells allowed the algorithm to consider paths through
these cells if no better options existed. This approach provided flexibility, though at
the cost of increased computational overhead.

1.1 Theta* Algorithm

Θ∗ improves upon A∗ by allowing straight-line paths between nodes, bypassing grid
constraints. It modifies the cost function by checking line-of-sight between the current
node and its ancestors. This often reduces the path length compared to A∗.

2



Figure 2: Smoothed path and normal path.

2 Anytime Weighted A∗

With admissible heuristic we get an optimal path, but what if we need a fast calculation
instead?

AWA* balances path quality and computational effort by prioritizing suboptimal solu-
tions early and refining them over time. It modifies A∗ by scaling the heuristic:

f(n) = g(n) + ε · h(n), ε > 1.

Smaller ε values yield higher-quality solutions but require more computation. This
approach is suitable for scenarios demanding fast, approximate results, such as real-
time navigation. Implementing AWA* is currently a work-in-progress. However this
should allow rapid pathfinding, with subsequent refinements yielding near-optimal paths
as time allows.

3 Geometric Approach: Visibility Graphs
For vector-based maps, I explored visibility graphs. These represent nodes as polygon
vertices and edges as unobstructed lines of sight. Paths are computed using standard
graph algorithms like the previously written A∗. Constructing the visibility graph is
computationally expensive, particularly for large datasets.

3.1 Optimization Attempts

My initial implementation was the most basic one I could think of, with O(n3) time
complexity, where n is the number of vertices. This was improved to O(n2) using

3



Algorithm 1 Θ∗ Algorithm (simplified)
Initialize open list with start node
while open list is not empty do

Pop node with smallest f(n)
if goal is reached then

Return path
end if
for all successors of the current node do

if successor is visible from parent then
Update cost and parent

else
Use standard A∗ cost update

end if
end for

end while

Figure 3: Visibility graphs of one poligon. Inner bisibility on the right and outer on
the left.

Overmars and Welzl’s approach [OW88], which cleverly sorts the edges in the visibility
graph. However, the large number of vertices still posed challenges. I reduced the graph
size by considering convex hull vertices only, and pruning redundant points (e.g., those
obstructed by the polygon itself). With this optimization I can prune the points, but
even then I ran into some issues.

Theorem. For any optimal path P there is no vertex v that if extended from S by any
ε > 0 it intersects the polygon.

4



Figure 4: Visibility graphs of multiple polygons. On left is more managabel on right
runs in approximately 100 hours and is dense without pruning.

Proof. Suppose the point B is on an optimal path but it has an elongation B′ from S
that is inside the polygon. Then there is a δ > 0 such that there is a point d that is
δ distance from B and is on the same path but the length of Sd is smaller than the
length of SB and Bd. This point d need not be on the polygon. Therefore in such case
B cannot be on an optimal path.

With this approach, we were able to reduce the visibility graph to a much smaller
size. However, one problem remained unresolved despite considering several stop-gap
solutions.

In the main problem, these polygons would have an associated weight per meters
crossed. We can consider inside edges as well but then the previous theorem losses
its purpouse.

Another problem arises with a long but thin rectangle: in such cases, it is more advan-
tageous to cross it in the middle rather than moving to one of its vertices.

4 Continuous Dijkstra
The algorithm that I refer to as "Continuous dijkstra"[Wan21] seemed to solve all my
probles last semester.

Continuous Dijkstra extends the traditional algorithm to continuous spaces, which is
ideal for vector maps. Instead of expanding grid cells, it propagates a wawefront through
the map. Obstacles are treated as barriers redirecting the wavefront. This method has

5



A B

C

T

S

B'

d

Figure 5: Convex hull and visibility pruning: Vertices B and C are excluded from
consideration.

an additional advantage: it can enumerate not only the shortest path but also the
second, third, and higher-order topologically distinct paths. These alternative paths
can be particularly useful for redundancy in path planning (or multi-robot systems).

However, I discovered that Continuous Dijkstra encounters significant challenges when
applied to multilayered maps. When multiple layers with differing weights are com-
bined, the wavefront propagation no longer correctly accounts for layer interactions. I
attempted to think of ways to integrate layer weights into the wavefront’s propagation
rule or even combine 0 − 1 layers but they all failed to preserve the method’s correct-
ness. If I somehow end up working on this problem in the future it must address how
to aggregate weights effectively across layers without breaking continuity.

5 Multilayer Challenges and Weight Aggregation
Multilayered maps introduce additional complexity, as each layer represents different
constraints or costs. For Continuous Dijkstra, the problem becomes more pronounced,
as the method assumes uniformity within the domain of propagation. Existing algo-
rithms like A∗ and Θ∗ can handle only single layers at a time but there is always a fix
(maybe).

One approach I tried was to rasterize all layers and combine them into a single layer.

6



The weight of each pixel or grid cell in the combined layer can be computed using
different functions of the layer weights:

• Sum of weights: Simple but often dominated by the highest-weighted layer and
can give wierd results.

• Maximum or minimum weight: Captures extreme constraints but may ignore
important nuances. I mostly neglected this approach.

• Convex combinations: Allows tuning between layers but requires careful cali-
bration.

The best part about convex combination is that for even the heuristics it preserves
admissibility.

Linear combinations of layer weights and heuristics do not conserve admissibility but
with AWA* it can be thought of as a hidden parameter. As more complex functions
proved to be challenging to think of a use for, such as non-linear aggregations, they
require further investigation.

The final idea was to combine all layers into a unified representation, treating the
aggregated weights as a new "super-layer". However, I have not determined an optimal
function for weight aggregation yet.

As I work with the ILAB research group maybe exploring machine learning approaches
to learn effective weighting functions from real-world data can be a potential direction.

6 Performance Comparison
During the work completed throughout the semester, I arrived at the following obser-
vations.

• Rasterized Maps: A∗ and Θ∗ performed well, with Θ∗ offering shorter paths
and found them usually much faster.

• Vector Maps: Visibility graphs proved tricky to work with, and they were also
computationally expensive.

• Hybrid Scenarios: Anytime algorithms balance speed and accuracy, particu-
larly in real-time contexts. Much improvement to be seen here.

7 Conclusion and Future Work
During this semester’s project work, I focused on exploring diverse path-planning algo-
rithms for multilayered maps and evaluating their strengths and limitations. Rasterized
approaches like A∗ and Θ∗ were usually efficient and fast to calculate, while visibility

7



graphs have much higher computational demands that can be offloaded beforehand.
However, scalability and computation still remain challenges.

Future work will focus on hybrid algorithms, combining the flexibility of geometric
methods with the efficiency of heuristic search. Additional optimizations, such as dy-
namic visibility graphs or perhaps machine-learning-based heuristics may further en-
hance performance.

References
[DP85] Rina Dechter and Judea Pearl. “Generalized best-first search strategies and

the optimality of A”. In: Journal of the ACM (JACM) 32.3 (1985), pp. 505–
536.

[OW88] M. H. Overmars and E. Welzl. “New methods for computing visibility graphs”.
In: Proceedings of the Fourth Annual Symposium on Computational Geome-
try. SCG ’88. Urbana-Champaign, Illinois, USA: Association for Computing
Machinery, 1988, pp. 164–171. isbn: 0897912705. doi: 10.1145/73393.
73410. url: https://doi.org/10.1145/73393.73410.

[Gho97] Subir Kumar Ghosh. “On recognizing and characterizing visibility graphs
of simple polygons”. In: Discrete & Computational Geometry 17.2 (1997),
pp. 143–162.

[Fel+11] Ariel Felner et al. “Inconsistent heuristics in theory and practice”. In: Artifi-
cial Intelligence 175.9-10 (2011), pp. 1570–1603.

[UK15] Tansel Uras and Sven Koenig. “An empirical comparison of any-angle path-
planning algorithms”. In: Proceedings of the International Symposium on
Combinatorial Search. Vol. 6. 1. 2015, pp. 206–210.

[RN16] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Pearson, 2016.

[KS21] Tyler King and Michael Soltys. Minimum Path Star Topology Algorithms for
Weighted Regions and Obstacles. 2021. arXiv: 2109.06944 [cs.DS]. url:
https://arxiv.org/abs/2109.06944.

[Wan21] Haitao Wang. A New Algorithm for Euclidean Shortest Paths in the Plane.
2021. arXiv: 2102.12589 [cs.CG]. url: https://arxiv.org/abs/2102.
12589.

8

https://doi.org/10.1145/73393.73410
https://doi.org/10.1145/73393.73410
https://doi.org/10.1145/73393.73410
https://arxiv.org/abs/2109.06944
https://arxiv.org/abs/2109.06944
https://arxiv.org/abs/2102.12589
https://arxiv.org/abs/2102.12589
https://arxiv.org/abs/2102.12589

	Rasterized Map Representation and A* Algorithm
	Theta* Algorithm

	Anytime Weighted A*
	Geometric Approach: Visibility Graphs
	Optimization Attempts

	Continuous Dijkstra
	Multilayer Challenges and Weight Aggregation
	Performance Comparison
	Conclusion and Future Work

