
Graph Canonization Algorithms

Nagy Szabolcs

2024/25 1st semester, Math Project 3

Canonization overview

Isomorphism-invariant graph labeling.

Motivation and goal of project

Applications:

Efficient generation of non-isomorphic graphs (n < 20),

deciding isomorphism between graphs,

various uses in biology in and chemistry,

etc. . .

Goal: examine and attempt to improve upon known canonization
algorithms.

McKay’s algorithm

A search-tree of ordered partitions on V (G)

Root contains unit partition: Π0 = V (G).

Partition of a child is always finer than that of the parent:
Πt ⊆ Πparent(t).

Leaves are trivial partitions ⇐⇒ permutations:
Πl = {vπ1}, {vπ2}, . . . {vπn} for some π ∈ Sn.

Graph degree information and automorphism data are used to
decrease the size of the search-tree.

Equitability

A partition Π is equitable if:
∀X1,X2 ∈ Π, ∀v1, v2 ∈ X1 : d(v1,X2) = d(v2,X2)

When setting Πt , if it is not equitable, refine it so it is.

Possible to do in isomorphism-invariant manner.

Equitable partition example

V1 = {A,B,C ,D},
V2 = {E ,F},
V3 = {G ,H}

Degrees:0 1 1
2 0 1
2 1 1

Refinement in action

v0

v1 v2

v3 v4

[v0, v1, v2, v3, v4]

[v3, v4][v0][v1, v2]

[v3][v4][v0][v1, v2] [v4][v3][v0][v1, v2]

[v3][v4][v0][v1][v2] [v4][v3][v0][v2][v1]

Ref

Ind(v3) Ind(v4)

Ref Ref

k-equitability

dk(v ,X) = |{w ∈ X : ∃v → w walk Q : |Q| = k}|

A partition Π is k-equitable if for any ℓ = 1 . . . k :
∀X1,X2 ∈ Π, ∀v1, v2 ∈ X1 : dℓ(v1,X2) = dℓ(v2,X2)

Notice: 1-equitability ⇐⇒ equitability

Equitable, but not 2-equitable partition

V1 = {A,B,C ,D},
V2 = {E ,F},
V3 = {G ,H}

d2(A,V3) = d2(B,V3) = 1
d2(C ,V3) = d2(D,V3) = 2

Markov-chains, stationary distributions

Construct Markov-chain from graph:

I = V (G),

step into any neighbor with equal probability.

Idea: calculate a stationary distribution for the above
Markov-chain, get ordered partition by sorting elements based on
distribution value.
This involves finding the solution of the lin. eq. sys.[
PT − I
1

]
µ =

[
0
1

]
, where P is the transition matrix.

Basic Markov-chain example

Transition matrix:
0 0.33 0.33 0.33 0
0.5 0 0 0.5 0
1 0 0 0 0

0.33 0.33 0 0 0.33
0 0 0 1 0

Unique stationary distribution:
µ = 1

10{3, 2, 1, 3, 1}

Resulting ordered partition:
Π = {3, 5}, {2}, {1, 4}

Ensuring isomorphism-invariance

Problem: stationary distribution might not be unique.
Enough to ensure uniqueness: irreducibility, aperiodicity.
Solution: additional “connecting” vertex z :

V (G ′) = V (G) + z

zv ∈ E (G ′) for all v ∈ V (G ′)

Constructing the same Markov-chain for G ′ always yields a unique
stationary distribution.

Improving the Markov-chain

More information can be gleamed from the distribution by putting
more thought into the construction:

adjust probabilities based on the current partition, relations
between neighboring cells
(allows repeated use of distributions),

possible steps based on k-long paths between vertices
(helps in “ensuring” k-equitability).

Results

Advantages of using k-equitability and stationary distributions:

Can find finer partitions than regular equitability checking

Decreases the number of search-tree nodes for certain graphs,
reducing runtime.

Drawbacks:

More time spent examining each node

Search-tree not guaranteed to be reduced, many graphs are
unaffected

Does not notably improve upon automorphism pruning

Canonizing all labeled graphs of size 6

37268 graphs total

2E - 2-equitability refinement

SD - Stationary distribution

AP - automorphism pruning

Method Nodes Runtime # smaller trees # bigger trees

∅ 139 995 770 ms - -
2E 139 935 740 ms 60 0
SD 139 770 754 ms 195 0

AP 127 915 684 ms - -
AP + 2E 127 915 730 ms 0 0
AP + SD 128 215 720 ms 0 90

Our work in this semester

What we did:

maintain/optimize our canonization implementation, and the
corresponding graph generator (C++)

implement cell refinement based on 2-equitability,

implement cell refinement based on stationary distributions.

Plans for the future:

generalize cell refinement for k-equitability,

further optimize Markov-chain construction,

look into further potential improvements to canonization.

Closing thoughts

In the last 3 semesters, we have:

thoroughly studied the theory of canonical labelings,

comprehended the main algorithm and its implementation,

produced our own object-oriented canonization program,

used it to create our own customizable isomorphism-free
graph generator,

tested some potential improvements to the algorithm,

found solid ground as to where to improve in the future.

