Knowledge Graphs and Retrieval-Augmented Generation

Adrienn Molnar

Introduction

This project builds upon the foundations established in the previous semester’s work,
which evaluated Retrieval-Augmented Generation (RAG) models under OCR-induced
noise. The current focus shifts towards the integration and implementation of knowl-
edge graphs within the RAG framework to enhance retrieval accuracy and contextual
understanding. Specifically, this semester’s objective is to explore knowledge graphs as a
standalone enhancement to RAG and assess whether their integration can independently
improve retrieval and generation results.

By leveraging the structured and interconnected nature of knowledge graphs, the project
aims to overcome limitations associated with vector stores, particularly in handling queries
that require reasoning across multiple documents. Through this approach, the project
seeks to demonstrate the unique benefits of knowledge graphs, such as semantic enrich-
ment and cross-document reasoning.

Problem Statement

RAG systems rely on retrieving relevant documents from a database to provide context
for generating answers to user queries. In the previous semester’s project, vector stores
were employed for this retrieval process and tested under OCR-induced noise. While ef-
fective for local retrieval tasks, vector stores face significant challenges when addressing
complex queries that require insights spanning multiple documents. Additionally, vector
stores lack the capacity to represent semantic relationships between entities, limiting their
ability to provide rich and interconnected contexts.

Objectives

1. Improve retrieval accuracy by leveraging structured and semantic connections be-
tween entities.

2. Provide richer contextual understanding for queries, especially for global and multi-
document questions.

3. Evaluate the independent impact of knowledge graphs on RAG performance.

The project implements a Python-based pipeline to construct, query, and evaluate knowl-
edge graphs using the Neo4j database and OpenAl’s GPT models. By integrating these
elements, the study aims to determine whether knowledge graphs can enhance RAG func-
tionality without relying on additional retrieval mechanisms.



Knowledge Graph

A knowledge graph is a structured representation of information where entities (nodes)
and their relationships (edges) are modeled to reflect real-world data. Entities can include
people, places, objects, or concepts, while edges define the semantic connections between
them. For example, a knowledge graph about movies might include entities such as actors,
directors, and films, with edges representing relationships like ”acted in” or ”directed by.”
Knowledge graphs are widely used in various domains for reasoning, search, and natural
language understanding.

How Knowledge Graphs Work?

1.

Entity Extraction: Entities are identified and classified from raw sources such as
text, databases or APIs.

. Relationship Identification: Semantic links between entities are established based

on patterns, rules, or ontologies.

Graph Construction: Nodes and edges are organized into a graph, often enriched
with attributes or metadata.

Community Detection: Graph algorithms group strongly connected entities, re-
vealing patterns or clusters.

Query Processing: Traversal techniques (e.g. Cypher) enable complex queries,
including subgraph extraction and inferencing.

Techniques for Enhancing RAG with Knowledge Graphs

The following techniques are presented in [Edge et al. [2024] and demonstrate how knowl-
edge graphs can improve RAG systems:

1.

Graph Indexing for Retrieval: Knowledge graphs serve as advanced indexes
for RAG. Using vector representations of nodes and edges, retrieval becomes more
accurate as graph-based similarity metrics align well with semantic relevance.

Community-Based Summarization: Modular community detection algorithms
partition the graph into closely connected entities, enabling modular summarization.
Summarizing these partitions ensures that the retrieved context is coherent and
thematically aligned with the query.

Graph-Driven Embedding Alignment: Techniques like Node2Vec and Graph-
SAGE generate graph embeddings, which can be combined with text embeddings.
This hybrid representation allows RAG systems to seamlessly integrate structured
and unstructured data.

Query Expansion via Traversal: Graph traversal algorithms expand user queries
to include related entities and relationships, enriching the context provided to the
RAG model. Traversal-based expansions are particularly useful for multi-hop ques-
tions where reasoning spans several nodes and edges in the graph.



5. Context Prioritization and Filtering: Contexts retrieved via knowledge graphs
are ranked based on graph metrics like edge weight, node centrality, and community
modularity. This ensures that the most relevant and impactful data is fed into the
RAG pipeline.

6. Hierarchical Summarization: Summaries are generated at multiple levels of
granularity, from individual nodes and edges to entire communities. The hierar-
chical nature allows for scalable and efficient query resolution, especially for global
questions requiring comprehensive coverage.

7. Global Query-Specific Optimization: The system can dynamically adjust graph
traversal depth and context fusion strategies based on the nature of the user query,
improving both precision and recall.

How Knowledge Graphs Enhance RAG Models

e Improved Retrieval Accuracy: Structured navigation improves grounding by
reducing irrelevant data.

e Contextual Enrichment: Semantic relationships provide richer contexts for lan-
guage models.

e Cross-Domain Reasoning: Connect disparate data sources to enable complex
reasoning.

e Noise Resilience: The structured nature makes knowledge graphs robust against
incomplete data.

Knowledge Graph Construction

We build directly on the SQuAD dataset (Stanford Question Answering Dataset), which
was also used in the previous semester’s project. By reusing SQuAD as a base, this project
maintains consistency while introducing knowledge graphs to enhance RAG functionality.

The SQuAD dataset contains Wikipedia articles, including context paragraphs paired
with related questions and answers. To unlock the potential of this data for advanced
question-answering tasks, we transform it into a graph structure stored in Neo4j. The
graph not only represents the content but also encodes semantic relationships between
entities and their contextual links, enabling hybrid retrieval methods that combine tradi-
tional and vector-based search techniques.

This section explains how we create the graph from the documents in the database and
utilize Neodj for storing and querying the graph.



Data Preparation and Transformation

The dataset is prepared for graph construction by treating each context paragraph as
an individual document. Each document is assigned a unique identifier through hashing,
ensuring consistent referencing.

The extracted information is transformed into a graph-compatible format, where entities
are represented as nodes and their relationships as edges.

e Document Transformation: This process focuses on converting unstructured
text from the dataset into graph-ready structures. Each document is analyzed to
extract key entities, such as names, locations, or technical terms, leveraging an
LLM-based transformer. These entities are represented as nodes in the graph, while
semantic relationships, such as ”is part of” or "related to,” are identified using
dependency parsing and contextual analysis to form edges between nodes. Each
node and edge is enriched with metadata, such as labels and relevance scores, to
capture the underlying semantics and structure of the document.

¢ Embedding Generation: Semantic embeddings are generated for each document
and entity using a pre-trained language model. These embeddings capture the
contextual meaning of the text and are stored as node properties, enabling similarity-
based queries.

e Neo4j Integration: We use Neo4j to organize and retrieve data within the knowl-
edge graph. Nodes represent entities or document segments, while edges capture
relationships between them, with both enriched by properties such as semantic em-
beddings and metadata for advanced querying. Full-text indexing on entity text
enables fast keyword-based searches across the graph, allowing to locate relevant
nodes and relationships efficiently using textual queries. By combining full-text in-
dexing with the graph’s structured relationships and semantic embeddings, Neo4j
delivers a robust hybrid retrieval system that supports both precise and semantically
rich queries, enhancing question-answering capabilities.

The figure [I| on the next page demonstrates how a subgraph from the knowledge graph
can be visualized using Neo4j Bloom. Neo4j Bloom provides an intuitive interface to
explore and interact with the graph, where purple nodes represent documents, and
yellow nodes represent entities such as "Rollo” and "Normandy”. The edges denote
semantic relationships between these entities, such as "ARRIVAL” or "RAIDED AND
SETTLED”.

Experimental Setup

This section outlines three initial approaches to integrating structured knowledge graph
retrieval and unstructured vector-based document retrieval into the RAG framework.
Both approaches explore how combining these methodologies can enhance contextual un-
derstanding and answer accuracy.

For each question in the SQuAD database, a specific document (in our case paragraph)
is marked as the source from which the answer should be derived.



Rollo

Danes

Swedes

Normans

INCLUDED _IN

Orkney

Vikings Normandy

Rollo’s
contingent... =

Norwegian-
s

Norse—Ga-
els

MENTIONS

Figure 1: Example of a knowledge graph subgraph visualized in Neo4j Bloom. The nodes
represent entities and documents, while the edges denote relationships.

Evaluation Metric
The primary evaluation metric is recall, defined as follows:

e Recall = 1: If the marked document is among the top 3 documents retrieved.

e Recall = 0: If the marked document is not included in the top 3 retrieved docu-
ments.

The metric assesses the system’s ability to include the correct context in its retrieved
results, which is critical for accurate answer generation.

The methodology combines structured retrieval from a Neo4j knowledge graph and
unstructured retrieval using a Neo4j vector store to enhance the RAG pipeline. This
hybrid approach leverages the semantic relationships captured in the knowledge graph
and text-based similarity to retrieve relevant contextual information for a given query.



Previous Results

The results from last semester’s project, using a vector store-based retrieval framework,
serve as a baseline for evaluating the current retrieval-augmented generation system. The
evaluation was conducted on a set of 237 questions, and the outcomes were as follows:

e Correct Answer and Correct Context: 169 instances (71%)
e Correct Answer but Incorrect Context: 14 instances (6%)
e Correct Context, Incorrect Answer: 33 instances (14%)
e Both Answer and Context Incorrect: 21 instances (9%)

The goal of the current experiment is to outperform these results by implementing a
hybrid retrieval approach.

First Approach

In this approach, retrieval is performed sequentially, prioritizing structured knowledge
graph data before incorporating unstructured document retrieval.

1. Structured Retrieval:
The structured retrieval process aims to retrieve the most relevant documents asso-
ciated with entities identified in the user query.

e Entity Extraction: Key entities, such as people, locations, or organizations,
are extracted from the query.

e Node Matching: These entities are matched against the knowledge graph to
locate corresponding nodes.

¢ Relationship Traversal: Relationships, such as "MENTIONS”, are tra-
versed to find connected document nodes that reference the entities.

The results include document nodes and their contextual connections to the query’s
entities. The rationale behind this process is to ensure that the most relevant
documents to the query are retrieved by leveraging their direct associations with
the extracted entities. See Appendix [A] for a detailed example.

2. Unstructured Retrieval: After structured retrieval the query is processed through
a Neodj vector store, which performs similarity-based searches on document embed-
dings generated using OpenAl’s text-embedding-ada-002 model. Document embed-
dings are compared to the query embedding to retrieve the top-k documents ranked
by semantic similarity.

3. Result Integration: The final context contains 3 documents, with priority given
to those retrieved through structured retrieval. Unstructured data complements the
structured results by providing additional textual details.

4. Answer Generation: The final context, consisting of the top 3 relevant documents,
is formatted into a predefined prompt that instructs the GPT model (gpt-3.5-turbo)
to generate answers based solely on the provided context. The generated answers
are evaluated by comparing them to the given answers in the SQuAD database and
verifying whether the correct document ID is included in the retrieved context.



Results

The results of the first approach, evaluated using 237 questions, are as follows:

e Correct Answer and Correct Context: 139 (59%)
e Correct Answer but Incorrect Context: 37 (16%)
e Correct Context but Incorrect Answer: 23 (10%)

e Both Answer and Context are Incorrect: 38 (16%)

These results fall below expectations when compared to the previous semester’s baseline.
The documents retrieved from the structured retrieval might not always be the most
relevant, as they are simply the documents that mention the given entity and may not
contain the most critical information related to the query. In the second approach, we
plan to address this issue by dropping these documents.

Second Approach

The second approach builds on the limitations identified in the first approach and in-
troduces a refinement to improve the relevance of the retrieved context. Unlike the first
approach, which prioritized documents retrieved from structured retrieval, this approach
focuses on leveraging relationships from the knowledge graph and unstructured vector-
based documents. By excluding the structured documents, the goal is to enhance the
quality of the retrieved context and, consequently, the accuracy of generated answers.

Retrieval Adjustments: Structured retrieval is limited to extracting relationships from
the knowledge graph instead of retrieving full documents associated with the entities. The
unstructured retrieval process remains the same.

The final context consists of:
e Retrieved relationships from the structured retrieval.

e Top 3 documents retrieved through vector-based similarity search in the unstruc-
tured retrieval step.

Results

The results of the second approach, evaluated using 237 questions, are as follows:
e Correct Answer and Correct Context: 186 (78%)
e Correct Answer but Incorrect Context: 4 (2%)
e Correct Context but Incorrect Answer: 30 (13%)

e Both Answer and Context are Incorrect: 17 (7%)



This approach outperforms the first by focusing on the most relevant elements of the
query. By excluding documents from structured retrieval, which may only loosely refer-
ence the entities, and relying on relationships from the knowledge graph, the retrieved
context becomes more targeted. Combining these relationships with vector-based doc-
uments ensures that the final context captures both semantic connections and detailed
textual information. This refinement minimizes irrelevant data and improves the relevance
of the retrieved context, leading to higher answer accuracy and recall.

Third Approach

The third approach introduces a hybrid retrieval methodology that combines vector-based
retrieval and full-text search within the Neo4j knowledge graph. This approach leverages
the strengths of both techniques to ensure that the retrieved context is both semantically
relevant and textually precise.

1. Embedding-Based Retrieval: The query is converted into an embedding using
OpenATl’s embedding model. A vector similarity search is performed using the
Neo4j vector index to retrieve nodes with high semantic similarity to the query.
This ensures that nodes related to the meaning of the query are prioritized. This is
similar to the unstructured retrieval in the previous approaches.

2. Full-Text Search: The query is also processed using a full-text index within Neo4j,
which retrieves nodes matching the query text semantically or via keywords. This
complements the embedding-based retrieval by capturing relevant nodes that may
not have strong embedding similarity but are textually aligned with the query.

3. Combining Results: Results from the vector-based and full-text searches are
combined into a single list. Scores from both retrieval methods are normalized to
ensure consistency and comparability. The combined list is ranked by relevance
scores, with the top-3 nodes selected for inclusion in the final context.

4. Context Integration: The selected best 3 results are combined into a single, co-
hesive context. Additional semantic relationships between entities (retrieved using
graph traversal) are included to enrich the context further.

Results and Analysis

The results of the third approach, evaluated using 237 questions, are as follows:

e Correct Answer and Correct Context: 192 (81%)
e Correct Answer but Incorrect Context: 5 (2%)
e Correct Context but Incorrect Answer: 29 (12%)

e Both Answer and Context are Incorrect: 11 (5%)



The third approach demonstrates the best performance among all tested methods, achiev-
ing a significant improvement in the rate of correct answers with correct context (81%).
When combining this with the cases of incorrect answers but correct context (12%), the
overall correct context retrieval rate reaches 93%, highlighting the effectiveness of the
retrieval strategy.

This improvement can be attributed to the use of comprehensive retrieval, which
combines embedding-based similarity and full-text search. This hybrid approach ensures
that the most relevant nodes are identified by leveraging semantic and textual relevance.
The normalization of scores enables a fair comparison between the two methods, leading
to a more precise and contextually relevant selection.

Conclusion

This project successfully addressed the initial problem of improving context retrieval
for Retrieval-Augmented Generation systems, specifically for queries requiring reasoning
across multiple documents. By integrating knowledge graphs, the project demonstrated
significant advancements over traditional vector-based retrieval methods, which lacked the
capacity to capture semantic relationships and struggled with cross-document reasoning.

Through three iterative approaches, the project showcased how knowledge graphs enhance
the context retrieval process. The first approach, which combined structured retrieval
from the knowledge graph with vector-based unstructured retrieval, provided a founda-
tion but revealed limitations in relying solely on documents mentioning the query entities.

Building on this, the second approach prioritized semantic relationships from the knowl-
edge graph over entity-referenced documents, combining them with vector-based retrieval.
This refinement significantly improved the relevance and quality of the retrieved context.

The third approach achieved the best results by unifying vector-based retrieval and
full-text search into a comprehensive hybrid framework. This approach combined the
strengths of embedding-based similarity, textual keyword relevance, and enriched seman-
tic relationships. By normalizing and ranking results, it delivered an overall correct con-
text retrieval rate of 93% and improved answer accuracy.

The project accomplished a substantial improvement in context retrieval by integrating
knowledge graph semantics and hybrid retrieval methodologies. This solution directly
addresses the initial problem statement, overcoming the challenges of traditional vector
stores in handling complex, multi-document queries. By providing interconnected knowl-
edge alongside relevant texts, the system ensures not only more accurate retrieval but
also enriched contextual understanding, ultimately enhancing the overall performance of
RAG systems.

These findings underscore the transformative potential of hybrid retrieval frameworks
combining knowledge graphs and vector-based methods. The outcomes of this study
provide a robust foundation for future research into context retrieval techniques and
their broader applications in domains requiring deep semantic reasoning and contextual
precision.



Appendix

A Structured Retrieval Example

Query: "Who did Rollo sign the treaty of Saint-Clair-sur-Epte with?”

Extracted terms:

e Entity: Rollo’

e Entity: ’Saint-Clair-sur-Epte’
Retrieved relationships:

e "Rollo - ARRIVAL -> Normandy"

e "treaty of Saint-Clair-sur-Epte - BETWEEN -> King Charles III of West
Francia"

e "treaty of Saint-Clair-sur-Epte - BETWEEN -> famed Viking ruler Rollo"

References

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody,
Steven Truitt, and Jonathan Larson. From local to global: A graph rag approach to
query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

10



	Structured Retrieval Example

