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1 Introduction

In the field of machine learning, extracting meaningful and informative representations
from data is essential for effective model performance. Traditionally, many models and
dimensionality reduction techniques, such as Principal Component Analysis (PCA), have
focused on variance maximization to identify the most significant directions of data vari-
ability. The method proves to be sensitive to outiers and is based on the unimodal
Gaussian setting, so while this approach effectively captures directions with the high-
est variance, it may overlook subtler, yet informative, structures within complex and
non-Gaussian datasets. This work revolves around exploring a method that provides the
maximum entropy subspace or direction within a given scenario and implementing it in
an existing method like Autoencoder based Outlier Detection.
Entropy, a fundamental concept from information theory introduced by Shannon [6],
quantifies the uncertainty or randomness in a system. In order to capture the most di-
verse and informative aspects of the data I experimented with locating subspaces that
maximize entropy, thereby enriching the representations beyond what variance maximiza-
tion alone can achieve. This Maximum Entropy approach, specifically through Maximum
Entropy PCA [2], presents a promising direction that is capable of uncovering richer data
structures and enhancing model robustness while being free from any distribution as-
sumptions.
By integrating MaxEnt-PCA into ML models, my goal was to explore its effectiveness and
improve model performance in tasks where traditional PCA may fall short. Specifically, I
apply MaxEnt-PCA to Autoencoders for Outlier Detection. Incorporating MaxEnt-PCA
into the latent space of Autoencoders enhances their ability to detect anomalies. The
maximized entropy promotes diverse and informative representations, enabling the model
to more accurately distinguish between normal and outlier data points.
Through the application, this study demonstrates the practical benefits of the MaxEnt-
PCA approach, showcasing its ability to enhance model performance in tasks requiring
high-quality representations and effective anomaly detection extending the effectiveness of
already existing methods. The subsequent sections delve into the theoretical foundations
of entropy maximization, the structure of the MaxEnt-PCA algorithm, and its integration
into Autoencoder architectures. Experimental results highlight the effectiveness of this
method, offering insights into its potential as a tool in the Machine Learning arsenal.

2 Entropy: Definition and Significance

Definition 1 (Entropy). Let X be a discrete random variable with probability mass
function PX(x), x ∈ X . The entropy (or Shannon entropy) of X is

H(X) = E
[
log

1

PX(X)

]
=
∑
x∈X

PX(x) log
1

PX(x)

=

∫
X
PX(x) log

1

PX(x)
dx.

Definition 2 (Rényi’s Quadratic Entropy). The Rényi entropy of order 2 [5] (also known
as the quadratic entropy) of X is defined as

H2(X) = − log
∑
x∈X

PX(x)
2.
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Let X be a continuous random variable with probability density function fX(x), x ∈ X .
The Rényi entropy of order 2 (quadratic entropy) of X is defined as

H2(X) = − log

∫
X
fX(x)

2 dx.

Entropy, in the context of information theory, quantifies the uncertainty or randomness in
a system. Introduced by Shannon [6], entropy serves as a measure of information content
and is pivotal in various machine learning algorithms, including autoencoders, where it
aids in optimizing the latent space representations.

3 Principal Component Analysis (PCA)

Definition 3 (Principal Component Analysis). According to Jolliffe [3], PCA is defined
as an orthogonal linear transformation on a real inner product space that transforms the
data to a new coordinate system such that the greatest variance by some scalar projection
of the data comes to lie on the first coordinate (called the first principal component), the
second greatest variance on the second coordinate, and so on.
Consider an n × p data matrix, X, with column-wise zero empirical mean. The trans-
formation is defined by a set of size l of p-dimensional vectors of weights or coefficients
w(k) = (w1(k), . . . , wp(k))

⊤ that map each row vector X(i) = (x1(i), . . . , xp(i)) of X to a
new vector of principal component scores t(i) = (t1(i), . . . , tl(i)), given by

tk(i) = X(i) ·w(k) for i = 1, . . . , n and k = 1, . . . , l,

in such a way that the individual variables t1, . . . , tl of t considered over the data set
successively inherit the maximum possible variance from X, with each coefficient vector
w constrained to be a unit vector (where l is usually selected to be strictly less than p to
reduce dimensionality).
The above may equivalently be written in matrix form as

T = XW,

where Tik = tk(i), Xij = xj(i), and Wjk = wj(k).
In order to maximize variance, the first weight vector w(1) thus has to satisfy

w(1) = argmax
∥w∥=1

{∑
i

(X(i) ·w)2
}

Equivalently, writing this in matrix form gives

w(1) = argmax
∥w∥=1

{
∥Xw∥2

}
= argmax

∥w∥=1

{
w⊤X⊤Xw

}
4 Maximum Entropy PCA (MaxEnt-PCA)

MaxEnt-PCA extends traditional PCA by incorporating entropy maximization to ensure
that the principal components capture the maximum uncertainty possible given the data
constraints. The method was introduced by He et al. [2].
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Consider Rényi’s quadratic entropy of a random variable X with probability density
function (P.D.F.) fX(x) defined by

H(X) = − log

(∫
f 2
X(x) dx

)
.

If fX(x) is a Gaussian distribution, the estimate of Rényi’s quadratic entropy is obtained
by:

H(X) =
1

2
log(|Σ|) + d

2
log(2π) +

d

2
,

where | · | denotes the absolute value of the determinant.
If the Parzen window method is used to estimate the P.D.F. fX(x), fX(x) can be

obtained by

f̂X(x) =
1

n

n∑
j=1

G(x− xj, σ
2),

where G(x− xj, σ
2) is the Gaussian kernel with bandwidth Σ = σ2I:

G(x− xj, σ
2) =

1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− xj)

⊤Σ−1(x− xj)

)
.

By substituting fX(x) in the entropy definition with the Parzen window estimate, the
entropy estimate by the Parzen window method can be formulated as:

H(X) = − log

(
1

n2

n∑
i=1

n∑
j=1

G(xi − xj, σ
2)

)
.

Thus, the MaxEnt-PCA optimization problem can be expressed as:

max
U

(
− log

(
1

n2

n∑
i=1

n∑
j=1

G(U⊤xi − U⊤xj, σ
2)

))

subject to U⊤U = I, where U is the projection matrix [4].

Proposition 1 (Optimal Solution of MaxEnt-PCA). The optimal solution of MaxEnt-
PCA is given by the eigenvectors of the following generalized eigen-decomposition prob-
lem:

XL(U)X⊤U = 2UΛ,

where
L(U) = D(U)−W (U),

Wij(U) =
G(U⊤xi − U⊤xj, σ

2)

σ2
∑n

i=1

∑n
j=1G(U⊤xi − U⊤xj, σ2)

,

and

Dii(U) =
n∑

j=1

Wij(U).
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Proof: To meet the orthonormal constraint on U , we define the Lagrangian function as
follows:

JH = − 1

n2

n∑
i=1

n∑
j=1

G(U⊤xi − U⊤xj, σ
2)− Tr(Λ(U⊤U − I)),

where Tr(·) denotes the matrix trace operation. The Karush-Kuhn-Tucker (KKT) con-
dition for the optimal solution specifies that the derivative of JH with respect to U must
be zero:

∂JH
∂U

=
n∑

i=1

n∑
j=1

Wij(U)(xi − xj)(x
⊤
i − x⊤

j )U − 2UΛ = 0.

Rearranging terms, we obtain:

XL(U)X⊤U = 2UΛ,

where
L(U) = D(U)−W (U),

Wij(U) =
G(U⊤xi − U⊤xj, σ

2)

σ2
∑n

i=1

∑n
j=1G(U⊤xi − U⊤xj, σ2)

,

Dii(U) =
n∑

j=1

Wij(U).

Intuitively, an optimal U is the eigenvectors of the symmetric matrix XL(U)X⊤, and the
Lagrangian multipliers Λ become a diagonal matrix: Λ = diag(λ1, . . . , λm) [2]. □

4.1 Algorithm 1. MaxEnt-PCA

Algorithm 1 MaxEnt-PCA

Input: Data matrix X, initial orthonormal matrix U , small positive value ϵ
Output: Orthonormal matrix U
1: converged ← FALSE

2: while not converged do
3: Calculate L(U) according to the definitions above
4: Solve the generalized eigen-decomposition XL(U)X⊤U = 2UΛ
5: Update U to be the eigenvectors corresponding to the top m eigenvalues
6: Check for convergence: if the change in entropy is smaller than ϵ, set converged

← TRUE

7: end while

4.2 Empirical Characteristics of MaxEnt-PCA

To illustrate the distinctive behavior of MaxEnt-PCA, I conducted an empirical analy-
sis using a minimal dataset consisting of three points in a two-dimensional plane. By
iterating over 180 degrees I calculated the entropy estimate in each angle and picked the
highest value in a brute-force way and compared it to the result of the MaxEnt-PCA algo-
rithm. The results shown on Figure 1 demonstrate that the maximum entropy projection
coincides with the angle that maximizes the separation between the two furthest points,
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Figure 1: Main characteristics of the maximum entropy projection

effectively aligning the projection vector with the direction that renders these points as
distant as possible in the projected space. This alignment ensures that the projected
distribution achieves maximum entropy by spreading the data points uniformly along
the one-dimensional axis. Additionally, the Gini coefficient of the nearest neighbors in
the projected space was found to be low, indicating a uniform distribution with small
inequality among the projected distances. These characteristics—maximizing inter-point
distances and promoting uniformity—underscore the effectiveness of MaxEnt-PCA in
capturing the essential geometric structure of the data, even in simple configurations.

5 Equivalence in the Gaussian setting

Based on the paper by Tsur, Goldfeld, and Greenewald [7], an important connection
for Gaussian data was formally revealed. This connection extends to Rényi’s quadratic
entropy.

Proposition 2 (Equivalence of MaxEnt-PCA and PCA for Gaussian Data). In the case
where the data X follows a Gaussian distribution X ∼ N(0,Σ), the optimal solution of
MaxEnt-PCA coincides with the solution of traditional PCA. Specifically, the projection
matrix U obtained from MaxEnt-PCA is identical to the matrix containing the top k
eigenvectors of Σ.

Proof. Assume that the data X ∈ Rd follows a multivariate Gaussian distribution:

X ∼ N(0,Σ),

where Σ ∈ Rd×d is the covariance matrix of full rank. Under the Gaussian assumption,
the Parzen window estimate of the probability density function (P.D.F.) fX(x) is:

f̂X(x) =
1

n

n∑
j=1

G(x− xj, σ
2),
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where G(x− xj, σ
2) is the Gaussian kernel with bandwidth Σ = σ2I:

G(x− xj, σ
2) =

1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− xj)

⊤Σ−1(x− xj)

)
.

Given that X is Gaussian, the density fX(x) is exactly:

fX(x) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
x⊤Σ−1x

)
.

Thus, the Parzen window estimate becomes an empirical estimate of the Gaussian density.
For Gaussian data, Rényi’s quadratic entropy is given by:

H(X) =
1

2
log |Σ|+ d

2
log(2π) +

d

2
.

When projecting onto a subspace defined by U ∈ Rd×k with U⊤U = I, the projected
data Y = U⊤X follows:

Y ∼ N(0, U⊤ΣU).

Thus, the Rényi’s quadratic entropy of the projection is:

H(Y ) =
1

2
log |U⊤ΣU |+ k

2
log(2π) +

k

2
.

MaxEnt-PCA seeks to maximize the entropy of the projected data Y :

max
U

H(Y ) = max
U

(
1

2
log |U⊤ΣU |+ k

2
log(2π) +

k

2

)
.

Since k
2
log(2π) + k

2
is constant with respect to U , the optimization simplifies to:

max
U

log |U⊤ΣU |.

Traditional PCA aims to find the projection matrix U that maximizes the variance of
the projected data, which can be formulated as:

max
U

tr(U⊤ΣU),

subject to U⊤U = I.
To relate the two objectives, observe that:

log |U⊤ΣU | = log

(
k∏

i=1

λi(U
⊤ΣU)

)
=

k∑
i=1

log λi(U
⊤ΣU),

where λi(U
⊤ΣU) are the eigenvalues of U⊤ΣU .

Maximizing
∑k

i=1 log λi(U
⊤ΣU) is equivalent to maximizing the product

∏k
i=1 λi(U

⊤ΣU),

which is the determinant |U⊤ΣU |. On the other hand, PCA maximizes
∑k

i=1 λi(U
⊤ΣU),

the trace of U⊤ΣU .
Under the Gaussian assumption, maximizing the determinant |U⊤ΣU | and the trace
tr(U⊤ΣU) are aligned in their optimal solutions. Specifically, both objectives are max-
imized when U spans the subspace corresponding to the top k eigenvectors of Σ. This

6



is because the arithmetic mean is always greater than or equal to the geometric mean,
with equality if and only if all λi are equal. However, in the context of maximizing both
the trace and the determinant, the optimal configuration occurs when U captures the
directions of maximum variance, i.e., the top eigenvectors. Therefore, in the Gaussian
setting where X ∼ N(0,Σ), the MaxEnt-PCA objective:

max
U

log |U⊤ΣU |

has its optimal solution U aligned with the top k eigenvectors of Σ, which is exactly the
solution obtained by traditional PCA.

(a) σ=0.60 (b) σ=5.60 (c) σ=10.60 (d) σ=15.60

Figure 2: Comparison of PCA and MaxEnt-PCA projections across different sigma values.

I experimented further with comparing the methods in a simple setting. The goal was
to achieve a better understanding of the relationship between the projections with dif-
fering hyperparameter values. The empirical analysis in a two-dimensional multimodal
Gaussian setting demonstrates that MaxEnt-PCA converges significantly to the tradi-
tional PCA as the bandwidth parameter σ increases. Specifically, the projection vectors
obtained through MaxEnt-PCA gradually align with those derived from PCA when σ is
incrementally raised. This convergence is visually illustrated in Figure 2, where higher
values of σ result in MaxEnt-PCA projections closely matching the PCA projections.

6 Entropy Maximization in Autoencoders

Autoencoders are neural network architectures composed of an encoder and a decoder
that collaboratively learn to represent input data through a compressed latent space.
Mathematically, the encoder function fθ : Rn → Rm maps an input vector x to a
lower-dimensional latent representation z = fθ(x), where m < n. The decoder func-
tion gϕ : Rm → Rn reconstructs the input as x̂ = gϕ(z). The latent space Z thus
serves as a lower-dimensional manifold that captures the essential features of the data,
preserving its intrinsic geometric and topological properties. Training is achieved by min-
imizing a reconstruction loss, typically defined as L(x, x̂) = ∥x− x̂∥22, which ensures that
the latent representation effectively encodes the information necessary for accurate data
reconstruction. [1]
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6.1 Outlier Detection

To evaluate the effectiveness of MaxEnt-PCA in identifying outliers, I conducted a
comparative analysis against standard PCA using synthetic three-dimensional datasets.
These datasets comprised both normally distributed data points and outliers, generated
in varying proportions to simulate diverse anomaly scenarios.
The outlier detection framework commenced with the synthesis of datasets where nor-
mal data points were sampled from a multivariate Gaussian distribution with randomly
selected means and covariances. Specifically, for each dataset instance, the normal data
points xi ∈ R3 were drawn from N (µnormal,Σnormal), where µnormal and Σnormal are the
mean vector and covariance matrix, respectively. Outliers were introduced by sampling
from a distinct Gaussian distribution N (µoutlier,Σoutlier), with ∥µoutlier − µnormal∥ ≥ δ
to ensure significant separation between normal data and outliers, where δ is a prede-
fined threshold. For each dataset example, both standard PCA and MaxEnt-PCA were
employed to project the high-dimensional data onto a one-dimensional subspace.

(a) Synthetic dataset with 1 anomaly point (b) Synthetic dataset with 10 anomaly points

Figure 3: Comparison of PCA and MaxEnt-PCA projections represented as lines on the
original data distrbution.

The results suggest that MaxEnt-PCA is indeed insensitive to anomaly points compared
to PCA, providing a more robust tool. An important example is shown on Figure 3
where the PCA projection is highly influenced by the additional variance introduced by
the increasing instance of the anomalious pattern.
Anomaly scores were derived from reconstruction errors, quantified as the Euclidean
distance between each original data point xi and its projection x̂i onto the subspace:

Anomaly Scorei = ∥xi − x̂i∥2 = ∥xi − (ww⊤)xi∥2.

Higher reconstruction errors corresponded to higher anomaly likelihoods, flagging poten-
tial outliers.
The performance of both PCA and MaxEnt-PCA was assessed using Receiver Operating
Characteristic Area Under the Curve (ROC AUC), Precision-Recall Area Under the Curve
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(PR AUC), and the Gini coefficient. The ROC AUC evaluates the trade-off between true
positive rate and false positive rate, while PR AUC focuses on the trade-off between
precision and recall, particularly relevant in imbalanced datasets. The Gini coefficient
provides a measure of inequality in the distribution of anomaly scores, with lower values
indicating a more uniform distribution conducive to reliable threshold-based detection.

(a) ROC Curve Comparison (b) Precision-Recall Curve Comparison

(c) MaxEnt-PCA Anomaly Scores (d) PCA Anomaly Scores

Figure 4: Comparative analysis of PCA and MaxEnt-PCA projections and performance.
(a) and (b) show ROC and Precision-Recall curves, respectively, while (c) and (d) illus-
trate anomaly score distributions for MaxEnt-PCA and PCA, respectively.

The results consistently demonstrated that MaxEnt-PCA outperformed standard PCA in
outlier detection across all synthetic datasets. Specifically, MaxEnt-PCA achieved higher
ROC AUC and PR AUC scores, indicating its superior ability to distinguish between
normal data points and outliers. Additionally, the Gini coefficient was generally lower for
MaxEnt-PCA, suggesting a more uniform distribution of anomaly scores and enhancing
the reliability of threshold-based detection by reducing false positives and negatives.
MaxEnt-PCA’s optimization of Rényi’s quadratic entropy facilitated a more informative
latent representation, effectively capturing the uncertainty within the data distribution
and enabling clearer separation between normal and anomalous points. This is visually
supported by the distinct clustering patterns observed in the anomaly score distributions,
where MaxEnt-PCA exhibited more pronounced class separation. Furthermore, the ROC
and Precision-Recall curves validated MaxEnt-PCA’s robustness, with steeper curves and
higher AUC values compared to standard PCA.
These comprehensive findings underscore the efficacy of MaxEnt-PCA as a dimensionality
reduction technique for outlier detection, particularly in complex data distributions where
traditional variance-based methods may be insufficient. The mathematical optimization
framework of MaxEnt-PCA ensures that the latent space preserves the intrinsic geometric
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structure of the data, thereby enhancing its discriminative power in identifying anomalies.

7 Conclusion

In this study, I experimented with Maximum Entropy Principal Component Analysis
(MaxEnt-PCA) as an extension to traditional Principal Component Analysis (PCA),
aiming to enhance dimensionality reduction by incorporating entropy maximization. The-
oretical analysis, supported by Proposition 2, established that MaxEnt-PCA aligns with
PCA under Gaussian assumptions, ensuring that both methods yield identical projection
vectors in such settings. Empirical evaluations on synthetic datasets demonstrated that
MaxEnt-PCA indeed converges to PCA as the bandwidth parameter σ increases.
Further analysis proved that MaxEnt-PCA outperforms PCA in outlier detection tasks.
Specifically, MaxEnt-PCA achieved higher ROC AUC and PR AUC scores while main-
taining lower Gini coefficients, indicating more uniform anomaly score distributions and
robust data representations. These findings highlight MaxEnt-PCA’s ability to capture
essential geometric structures and promote uniformity, making it a superior choice for
complex, multimodal data distributions where traditional PCA may fall short.
However, this study has limitations, including reliance on synthetic datasets and the
computational complexity associated with higher-dimensional data. Additionally, the
necessity for careful tuning of the bandwidth parameter σ presents a challenge for prac-
tical applications. Future research will focus on applying MaxEnt-PCA to real-world
datasets and exploring its integration with more complex models such as Generative
Adversarial Networks (GANs). By comparing latent space structures between models
with and without MaxEnt-PCA, we aim to further elucidate its benefits and enhance its
applicability across diverse machine learning frameworks.
Overall, MaxEnt-PCA emerges as a powerful dimensionality reduction technique that not
only preserves the intrinsic geometric structure of the data but also enhances represen-
tation informativeness and robustness. Its flexibility in adapting through entropy max-
imization makes it particularly suited for intricate and non-Gaussian datasets, thereby
expanding the toolkit available for advanced machine learning applications.
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