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1 Introduction

In fluid dynamics, fundamental models of the stationary flow of incompressible fluids are given
by PDE systems such as Navier–Stokes equations. Stationary convection-diffusion equations
can be considered as the elementary building blocks of the linearized version of such models.
These are in general nonsymmetric elliptic partial differential equations, endowed with bound-
ary conditions, which describe convective and diffusive effects simultaneously. A practically
relevant subclass of these is formed by the so-called convection-dominated problems, where
the impact of diffusion is less significant compared to the convection of the modeled fluid.

The analytical solution of such problems cannot be calculated in general, so instead we use nu-
merical methods to approximate the solution to the desired accuracy. This is usually achieved
with the finite difference (FDM) or the finite element method (FEM). The discretization process
results in a system of linear equations that can be solved by a nonsymmetric iterative method,
such as the Conjugate Gradient method applied to the normal equation (CGN) or the General-
ized Conjugate Residual method (GCR).

It has been shown in [1] by earlier authors that there is no single “best” nonsymmetric iterative
method that we know of, that is, which would dominate all the others with respect to the number
of iterative steps required to decrease the error of the approximation below a given threshold.
This work aims to study this question in the practically important special case when the matrices
come from discretized nonsymmetric elliptic problems.

In the preliminaries, we formulate the studied nonsymmetric elliptic problems, review the meth-
ods used for generating the discretization matrix, and present the mentioned nonsymmetric it-
erative methods along with some well-known linear and superlinear convergence estimates.

After this section, the new results are presented. In this thesis there are both theoretical and
numerical achievements. Detailed numerical experiments are conducted in MATLAB for var-
ious nonsymmetric elliptic test problems with FDM, FEM and SDFEM discretizations to see
which iterative method prevails under which conditions. These experiments suggest that for our
special class of problems, depending on the coefficients of the PDE, we can still forecast (or at
least explain) which method will converge faster. In order to study the rate of convergence, the
linear and superlinear convergence estimates are compared theoretically and numerically.

The theoretical results in the linear case include the comparison of the estimates using the root
of a cubic function, and its application for giving a computable upper bound in case of FEM
discretization, and a lower and upper bound in case of SDFEM discretization for the parameter
of the convection term, in which case the linear estimation of CGN is better than that of GCR.
The superlinear estimations are compared for a constant vector field in the limiting case when
the diffusion parameter is zero, and an upper bound is obtained in case of SDFEM discretization.

2 Nonsymmetric elliptic problems and their numerical solution

Let us consider the following boundary value problem on the domain Ω = (0,1)× (0,1) with
functions f : Ω → R and w : Ω → R2:{

−α∆u+w ·∇u = f
u|∂Ω = 0

(1)
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In this convection-diffusion problem, the first-order nonsymmetric term w ·∇u describes con-
vection, while the second-order term −α∆u determines the diffusion process.

Suppose that the following assumptions are satisfied:

(i) α > 0 is a constant;

(ii) w ∈C1(Ω,R2) and div(w) = 0;

(iii) f ∈ L2(Ω).

These conditions ensure (see [2], sec. 8.1) that the given boundary value problem has a unique
weak solution, which means that ∃! u ∈ H1

0 (Ω) such that∫
Ω

(α∇u ·∇v+(w ·∇u)v) =
∫

Ω

f v (∀v ∈ H1
0 (Ω)). (2)

2.1 Discretization methods

In this project, three dicretization methods are considered: FDM with the second-order cen-
tral scheme, standard FEM with first-order Courant elements, and the SDFEM, that is a sta-
bilized version of the standard FEM. We perform one of the discretization methods on the
problem in (1) to give a finite dimensional approximation. The SDFEM is used especially
when the problem is convection-dominated, i.e. α is a small positive constant (e.g. 10−2), in
which case the standard FEM converges slowly. The idea as described in [3] is that we ex-
tend the weak form with a stabilizing term containing a parameter δ > 0 for which the usual
choice is δ = O(h). If we chose δ := 0, we would get back the standard FEM. The dis-
cretization results in a system of linear equations Au = b. The components of matrix A are
ai j :=

∫
Ω

(
α∇φ j ·∇φi +

(
w ·∇φ j

)
φi +δ (w ·∇φ j)(w ·∇φi)

)
, and vector b has the components

bi :=
∫

Ω
f (φi +δw ·∇φi). The three discretization methods (FDM, standard FEM and SDFEM)

have been implemented in MATLAB ([9]).

2.2 Nonsymmetric iterative methods

In order to determine the numerical solution, we have to solve the system of linear equations
Au = b obtained from the chosen discretization. Matrix A is not symmetric in general, so we
need to use nonsymmetric iterative methods. In this thesis, we compare two widely used iter-
ative methods: the Conjugate Gradient method applied to the normal equation (CGN) and the
Generalized Conjugate Residual method (GCR). The basic algorithms can be found e.g. in [5].

These algorithms would be slow if we directly applied them to the original system of equations,
so we rather solve the preconditioned system S−1Au = S−1b, where the preconditioner matrix S
will be the symmetric part of A, i.e. S := A+AT

2 . As pointed out in [3], the components of S are

si j = ⟨φ j,φi⟩S :=
∫

Ω

(
α∇φ j ·∇φi +δ (w ·∇φ j)(w ·∇φi)

)
.

Matrix S is symmetric positive definite, so we can consider the energy inner product ⟨x,y⟩S :=
⟨Sx,y⟩ and the corresponding S-norm ∥x∥S :=

√
⟨x,x⟩S, which will appear in the algorithms and

the convergence estimates as well.
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2.3 Linear and superlinear convergence estimates

The S-norm of the residual error vector rk = S−1Auk −S−1b in the kth iterative step is bounded
linearly (see [3]), which depends on the coercivity bound m and the S-norm of S−1A:

m := inf
{〈

S−1Ac,c
〉

S : ∥c∥S = 1
}
= inf{⟨Ac,c⟩ : ∥c∥S = 1}> 0

M := ∥S−1A∥S = sup{⟨Ac,d⟩ : ∥c∥S = ∥d∥S = 1}
(3)

The linear bound for the residual norm regarding the CGN and GCR methods is as follows:

Linear estimation of CGN:
(
∥rk∥S

∥r0∥S

) 1
k

≤ 2
1
k

M−m
M+m

(k = 1, . . . ,N) (4)

Linear estimation of GCR:
(
∥rk∥S

∥r0∥S

) 1
k

≤
√

1−
(m

M

)2
(k = 1, . . . ,N) (5)

Apart from the linear estimates, a well-known superlinear convergence estimate exists for both
methods (see [6], sec. 2.2.), which uses the decomposition S−1A= I+E. Let s j(E) ( j = 1,2, . . .)
denote the singular values of matrix E in decreasing order, each repeated as many times as its
multiplicity. If matrix E is antisymmetric, i.e. E∗ = −E, then the superlinear estimation in the
kth iterative step is as follows:

Superlinear estimation of CGN:
(
∥rk∥S

∥r0∥S

) 1
k

≤
2∥A−1S∥2

S
k

k

∑
j=1

s2
j(E) (k = 1, . . . ,N) (6)

Superlinear estimation of GCR:
(
∥rk∥S

∥r0∥S

) 1
k

≤ ∥A−1S∥S

k

k

∑
j=1

s j (E) (k = 1, . . . ,N) (7)

3 Numerical comparison of the iterative methods

Let us consider the following convection-diffusion type nonsymmetric elliptic problems as a
special case of (1), which now depend on the constants ε > 0 and ρ > 0:{

−ε∆u+ρw0 ·∇u = 1
u|∂Ω = 0

(8)

We conduct numerical experiments with two vector fields used also in [7]:

(i) w0 := (1, 0) is a constant vector field. It is used for its simplicity, and it makes the calcu-
lations more manageable.

(ii) w0 := (−y+ 1
2 , x− 1

2) is a rotating vector field. This is also called an affine version of
the Molenkamp–Crowley advection problem that is widely used in simplified advection
models for testing numerical methods.

We are interested in which iterative method solves the resulting discretized problem in less
iterative steps for different coefficients ε and ρ . For that, we fix ε , start increasing ρ from 0, and
plot the number of iterative steps until convergence when TOL := 10−10 and n := 50. We do
the same experiments for the three discretization methods separately, and interpret the results.
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The plots for the FDM and FEM discretization are seen in figure 1 and figure 2. We analyze the
plots of these methods simultaneously because they are very similar to each other. When ρ = 0,
both methods converge instantly in one step. As ρ is increased, the number of required iterative
steps increases as well. For the preconditioned CGN method, this increment seems linear with
respect to ρ , while the preconditioned GCR method has a concave curve. This results in an
intersection point of the two curves. Before the intersection, the preconditioned CGN method
converges in less iterative steps, while afterwards this relation flips over, and the preconditioned
GCR method becomes faster. For a fixed vector field, we can see that in order to reach a fixed
number of iterative steps, a ten times larger ε needs an approximately ten times larger ρ . Con-
sequently, for different ε values, we get the rescaled versions of the same graph. If we compare
the graphs of the constant and rotating vector fields, the shape of the curves are very similar,
only the scales of the axes differ.

The plots for the SDFEM with a usual choice of δ := h = 1
51 are seen in figure 3, while the plots

with a smaller value δ := 5 · 10−5 for the constant case can be seen in figure 4. When ρ = 0,
both methods converge instantly. When δ = h, the preconditioned CGN method performs better
everywhere. For the constant vector field, there is a sudden increase in the number of iterative
steps as we start increasing ρ from 0, but afterwards it rapidly approaches zero. When we take
one tenth of the value of ε , the graphs look similar, but the peaks of the curves rise twice as
high and get twice as close to the y-axis. For the rotating vector field, the plot for ε = 0.001 has
similar characteristics, but the number of iterative steps settles higher than 0 as ρ gets large. For
a larger ε , the curves show a different, rather increasing tendency up to ρ = 50.

When δ = 5 · 10−5, mostly the preconditioned CGN method converges faster, but for a suf-
ficiently small ε , e.g. ε = 0.01 or ε = 0.001, there is an interval around the peak where the
preconditioned GCR method performs better. The scale of the axes is larger compared to the
case δ = h, but the shape of the graphs is similar.

Figure 1: Number of iterative steps taken by the preconditioned CGN and GCR methods until
convergence with FDM discretization when ε = 0.1,1,10 is fixed and ρ is varied.
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Figure 2: Number of iterative steps taken by the preconditioned CGN and GCR methods until
convergence with standard FEM discretization when ε = 0.1,1,10 is fixed and ρ is varied.

Figure 3: Number of iterative steps taken by the preconditioned CGN and GCR methods until
convergence with SDFEM discretization using parameter δ = h when ε is fixed and ρ is varied.

Figure 4: Number of iterative steps taken by the preconditioned CGN and GCR methods until
convergence with SDFEM discretization using δ = 5 ·10−5 when ε is fixed and ρ is varied.
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4 Comparison of the linear convergence estimates

Theorem 4.1. Let k ∈ {1, . . . ,N} be an arbitrary index. The linear estimation of the GCR
method in the kth iterative step is better than that of the CGN method, that is, the upper bound
for the convergence rate in (5) is lower than the one in (4) if and only if M

m > Lk, where m and
M are defined as in (3), and Lk is the unique real root of function

fk(x) = (1−4
1
k )x3 +(3+4

1
k )x2 +3x+1,

which can be calculated as

Lk =
c

2
3 ( 3
√

z− t + 3
√
−z− t)−3− c2

3(1− c2)
,

where c = 2
1
k , t = 27+36c2 + c4 and z = (c2 −1)

√
27(c2 +27).

k 1 2 3 4 5 6 7 8 9 10

Lk 2.7423 5.5708 8.4388 11.3158 14.1962 17.0783 19.9614 22.8450 25.7291 28.6134

Table 1: The first ten values of Lk.

Proposition 4.2. The finite sequence {Lk}104

k=1 is strictly monotonic increasing.

Proposition 4.3. If the linear estimation of CGN is better than that of GCR for an index k′ ∈
{1, . . . ,N}, then it is better for any k ∈ {k′, . . . ,N} as well.

Proposition 4.4. If S is the symmetric part of A, then the coercivity bound of S−1A is m = 1.

Corollary 4.5. The linear estimation of the CGN method in the kth iterative step is better than
that of the GCR method if and only if ∥S−1A∥S < Lk.

Proposition 4.6. When using standard FEM discretization, and parameter ρ in (8) satisfies

ρ <
√

2π(L1 −1)
ε

∥w0∥L∞

≈ 7.741 · ε

∥w0∥L∞

, (9)

then the linear estimation of CGN is better for every iterative step.

Proposition 4.7. When using SDFEM discretization, and parameter ρ satisfies (9), then the
linear estimation of CGN is better for every iterative step.

Remark 4.8.

(i) By the previous calculations, we can give the following lower and upper bounds for
∥S−1A∥S:

1 ≤ ∥S−1A∥S ≤ 1+
ρ∥w0∥L∞

ε
√

2π

By the Squeeze Theorem, ∥S−1A∥S → 1 as ρ → 0.

(ii) When ρ = 0, matrix A is symmetric, therefore S = A and ∥S−1A∥S = ∥I∥S = 1.
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Proposition 4.9. When using SDFEM discretization, and parameter ρ satisfies

ρ >
1

L1 −1
· Cw0

δ
≈ 0.574 · Cw0

δ
, (10)

where Cw0 is the constant in the streamline Poincaré–Friedrichs inequality, then the linear esti-
mation of CGN is better for every iterative step.

Remark 4.10. By the previous calculations, we can give the following lower and upper bounds
for ∥S−1A∥S:

1 ≤ ∥S−1A∥S ≤ 1+
Cw0

ρδ

By the Squeeze Theorem, ∥S−1A∥S → 1 as ρ → ∞.

Corollary 4.11. When using SDFEM discretization, if

ρ <
√

2π(L1 −1)
ε

∥w0∥L∞

or ρ >
Cw0

(L1 −1)δ
, (11)

then the linear estimation of CGN is better for every iterative step.

Proposition 4.12. When using SDFEM discretization with a parameter δ for which

δ >
Cw0∥w0∥L∞

√
2π(L1 −1)2ε

≈ 0.0741 · Cw0∥w0∥L∞

ε
, (12)

then the linear estimation of CGN is better for every iterative step for any ρ > 0.

4.1 Application of the linear results to interpret the numerical experiments

Proposition 4.13. For any nonsymmetric elliptic problem of the form (8), if ρ = 0, then both
iterative methods converge after one step.

Observation 1. When using FEM discretization, the preconditioned CGN method is always
better than the preconditioned GCR method when ρ is close to 0.

Explanation. In Remark 4.8 we showed that ∥S−1A∥S → 1 as ρ → 0, and S−1A = I if ρ = 0.
The numerical tests show that whenever ∥S−1A∥S is close to 1, ∥rn∥S is approximated very
accurately by the linear estimation. Therefore, it is reasonable to use Proposition 4.6 in case of
FEM discretization. This states that if ρ is close to 0, then the linear estimation of CGN is better
for every iterative step, so ∥rn∥S decreases more rapidly when using the CGN method. ■

Observation 2. When using FEM discretization, the preconditioned GCR method is always
better than the preconditioned CGN method when ρ is sufficiently large.

Explanation. As ρ gets larger, ∥S−1A∥S gets larger as well. This gives advantage to the GCR
method according to Corollary 4.5. On the other hand, the linear estimations are only loose
approximations of the residual norms for large values of ∥S−1A∥S, so this is not a sufficient
explanation by itself. ■

Observation 3. When using SDFEM discretization, the preconditioned CGN method is always
better than the preconditioned GCR method when ρ is close to 0.
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Explanation. We use the argument in the explanation of Observation 1 with Proposition 4.7 in
case of SDFEM. ■

Observation 4. When using SDFEM discretization for a nonsymmetric elliptic problem where
the streamline Poincaré–Friedrichs inequality is applicable (e.g. for constant vector fields), then
the preconditioned CGN method is always better than the preconditioned GCR method when ρ

is sufficiently large.

Explanation. In Remark 4.10 we showed that ∥S−1A∥S → 1 as ρ → ∞. Therefore, we can use
the previous argument with Proposition 4.9. ■

Observation 5. When using SDFEM discretization for a nonsymmetric elliptic problem where
the streamline Poincaré–Friedrichs inequality is applicable, then the preconditioned CGN method
is always better than the preconditioned GCR method for any ρ > 0 when δ is sufficiently large.

Explanation. We use Proposition 4.12. ■

For the constant vector field w0 =(1, 0), we can calculate the intervals where the preconditioned
CGN method is always a better choice. For that, we need to calculate ∥w0∥L∞ and Cw0 .

∥w0∥L∞ is the lowest upper bound for |w0| =
√

12 +02 = 1, therefore ∥w0∥L∞ = 1.

The method for obtaining Cw0 is described in [3] (Sec. 3.2.). The characteristic curves of the
vector field w0 can be parameterized with γs(t) := (t,s), where (s, t)∈ [0,1]2 =: K. The absolute
value of the determinant of its Jacobian matrix can be calculated as follows:

Jw0(s, t) =
∣∣∣∣det

(
∂s(t) ∂t(t)
∂s(s) ∂t(s)

)∣∣∣∣= ∣∣∣∣det
(

0 1
1 0

)∣∣∣∣= |−1|= 1

Figure 5: The actual and linear estimations of ∥rk∥S with FEM, n = 20, TOL = 10−10, ε = 1,
w0 = (1, 0) and ρ = 0.1,1,5.

Figure 6: The actual and linear estimations of ∥rk∥S with SDFEM, n = 20, TOL = 10−10, δ = h,
ε = 0.01, w0 = (1, 0) and ρ = 0.001,1,20.
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This is bounded from below and above by µ = µ̃ := 1. From this, we can calculate

Cw0 = diam(K) ·
√

µ̃/µ = diam(K) =
√

12 +12 =
√

2.

According to the relation in (9), the CGN method is better in the interval (0,7.741 ·ε) when the
discretization is executed with the FEM, which is the interval (0,7.741) for ε = 1.

According to the relation in (11), the CGN method is better in the domain R+\
[
7.741 · ε, 0.812

δ

]
when the discretization is executed with the SDFEM, which is R+ \ [0.0774, 16.917] for ε =
0.01 and δ = 0.048.

The plot of the residual norms ∥rk∥S and the corresponding linear estimations can be seen in
figure 5 for ε = 1 with FEM and in figure 6 for ε = 0.01 with SDFEM. These graphs confirm
that according to our calculations if ρ ∈ (0,7.741) in figure 5 and ρ ∈R+ \ [0.0774, 16.917] in
figure 6, then the linear estimations follow closely the residual norms, and the linear estimation
of CGN is always below that of GCR. We can also see that the linear estimations in figure 5
start deteriorating as ρ is increased, and in case of SDFEM in figure 6, the linear estimations do
not approximate well when ρ = 1, which is in the excluded interval.

5 Comparison of the superlinear convergence estimates

Apart from the previously analyzed cases, numerical experiments show that the linear estima-
tion of the residual norm does not reflect the actual convergence. The reason for this is that after
a short linear phase, the rate of convergence speeds up and gets into the superlinear phase. Thus
for further analysis, we need to utilize the superlinear estimates introduced in Section 2.3.

Proposition 5.1. Let ∥A−1S∥S = 1 be satisfied, and suppose that E is antisymmetric. The su-
perlinear estimation of GCR in the kth iterative step is better than that of CGN exactly when

k

∑
j=1

s j (E)< 2
k

∑
j=1

s2
j(E). (13)

Proposition 5.2. When using SDFEM discretization, if ε = 0 and w0 = (1, 0), then the eigen-
values of operator E are

µ j(E) =
i

2πρδ j
( j ∈ Z\{0}). (14)

Proposition 5.3. When using SDFEM discretization, if ε = 0 and w0 = (1, 0), then

s2 j(E) = s2 j−1(E) =
1

2πρδ j
( j = 1,2, . . .).

Proposition 5.4. Let k ∈ N be arbitrary and k′ := 2k. When using SDFEM discretization, if
ε = 0 and w0 = (1, 0), then the superlinear estimation of the GCR method in the k′-th iterative
step is better than that of the CGN method if

ρ <
1

πδ

k
∑
j=1

1
j2

k
∑
j=1

1
j

≈ 1
πδ

π2

6
− 1

k

0.5772+ lnk+
1
2k

. (15)
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Proposition 5.5. Let k∈N be an arbitrary index and E0 := 1
ρ

E. When using FEM discretization,
the superlinear estimation of the GCR method in the kth iterative step is better than that of the
CGN method if

ρ >

k
∑
j=1

s j(E0)

2
k
∑
j=1

s2
j(E0)

. (16)

5.1 Limitations of using the linear and superlinear estimates

So far, we have explained why the CGN method is better on the left side of the FEM plots in
figure 2 using Observation 1, and with a similar argument we have shown why the CGN method
is better on the left and right sides of the SDFEM plots in figure 3 and 4 using Observation 3
and 4. What remain to be answered is that why the GCR method is better on the right side of
the FEM plots, and what determines whether the CGN or GCR method is better near the peak
on the left side of the SDFEM plots. These have been partially explained in Observation 2 and
Proposition 5.5 in case of FEM and in Observation 5 and Proposition 5.4 in case of SDFEM.

Unfortunately, neither the comparison of the linear nor the superlinear estimates can be used
directly to explain these outcomes. The reason for this is that none of these reflect the actual
convergence of the residual norms. This is illustrated in figure 7 and 8.

Figure 7: The actual residual norms and their linear and superlinear estimations with FEM,
n = 20, TOL = 10−10, ε = 1, w0 = (1, 0) and ρ = 10,50,100.

Figure 8: The actual residual norms and their linear and superlinear estimations with SDFEM,
n = 20, TOL = 10−10, δ = h, ε = 0, w0 = (1, 0) and ρ = 1,5,10.
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