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The studied elliptic problem

Let us consider the following elliptic boundary value problem:{
−ε∆u+w ·∇u = f

u|∂Ω = 0
,

where Ω= (0,1)2 is the unit square, ε > 0 is a constant,
w ∈ C 1(Ω,R2) is a divergence-free vector field and f ∈ L2(Ω).

This models a stationary convection-diffusion process.
It is related to the linearized version of the Navier–Stokes
equations arising from fluid dynamics.
Convection-dominated problems form an important subclass:
ε ≪ 1.
The problem has a unique weak solution u ∈ H1

0 (Ω) such that∫
Ω (ε∇u ·∇v +(w ·∇u)v) =

∫
Ω fv (∀v ∈ H1

0 (Ω)).
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Discretization methods

We approximate the solution with one of the following numerical
methods on the uniform grid of the unit square:

FDM: Finite difference method, second-order central scheme.
FEM: Finite element method, first-order Courant elements.
SDFEM: Streamline diffusion finite element method for
convection-dominated problems with a stabilizing parameter
δ > 0.



4 / 17

Nonsymmetric iterative methods

The discretization leads to a system of linear equations Au = b,
where matrix A is nonsymmetric.

This can be solved by one of the following iterative methods:

CGN: The conjugate gradient method applied to the normal
equation.

GCR: Minimization of the residual error in the Krylov subspace.

Preconditioning: In order to boost the rate of convergence, we
solve S−1Au = S−1b instead of the original system of equations,
where S := A+AT

2 is the symmetric part of matrix A.

Stop criterion: ∥rn∥S :=
√
⟨Srn, rn⟩< TOL, i.e. when the S-norm

of the residual error vector decreases below a given threshold (e.g.
TOL = 10−10).
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Preconditioned CGN

u0 := 0;
r0 := S−1Au0 −S−1b;
s0 := S−1AT r0;
p0 := s0;
n := 0;
while ∥rn∥S > TOL do

zn := S−1Apn;

αn =−
∥sn∥2

S

∥zn∥2
S

;

un+1 := un+αnpn;
rn+1 := rn+αnzn;
sn+1 := S−1AT rn+1;

βn =
∥sn+1∥2

S

∥sn∥2
S

;

pn+1 := sn+1 +βnpn;
n := n+1;

end

Preconditioned GCR

u0 := 0;
r0 := S−1b−S−1Au0;
p0 := r0;
z0 := S−1Ap0;
n := 0;
while ∥rn∥S > TOL do

αn :=
⟨rn,zn⟩S
∥zn∥2

S

;

un+1 := un+αnpn;
rn+1 := rn−αnzn;
sn := S−1Arn+1;
for i = 0,1, . . . ,n do

βi ,n :=−⟨sn,zi ⟩S
∥zi∥2

S

;

end

pn+1 := rn+1 +
n

∑
i=0

βi ,npi ;

zn+1 := sn+
n

∑
i=0

βi ,nzn;

n := n+1;
end
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Comparison of the two iterative methods

Let us consider the following problem depending on the parameters
ε > 0 and ρ > 0: {

−ε∆u+ρw0 ·∇u = 1
u|∂Ω = 0

Question: Which iterative method solves the resulting system of
linear equations Au = b in less iterative steps for different values of
ε and ρ?

Test problem: Consider the constant vector field w0 := (1,0).

Numerical test: We fix the value of ε , increase ρ starting from 0,
and plot the number of iterative steps until convergence for the
three discretization methods separately.

Implementation: MATLAB
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Numerical results: FDM and FEM
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Numerical results: SDFEM
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Linear convergence estimates

In order to explain the numerical results, I used the following two
well-known linear convergence estimates:

CGN:
(
∥rk∥S
∥r0∥S

) 1
k

≤ 2
1
k
M−m

M+m
(k = 1, . . . ,N)

GCR:
(
∥rk∥S
∥r0∥S

) 1
k

≤
√

1−
(m
M

)2
(k = 1, . . . ,N)

Here, rk = S−1Auk −S−1b is the residual error in the kth iterative
step, and M ≥m > 0 are constants defined in the following way:

m := inf {⟨Ac,c⟩ : ∥c∥S = 1}

M := ∥S−1A∥S = sup{⟨Ac,d⟩ : ∥c∥S = ∥d∥S = 1}
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A general theoretical result for the linear estimates

Theorem: Let k ∈ {1, . . . ,N} be an arbitrary index. The linear
estimation of the GCR method in the kth iterative step is better
than that of the CGN method if and only if M

m > Lk , where Lk is
the unique real root of function

fk(x) = (1−4
1
k )x3+(3+4

1
k )x2+3x+1,

which can be calculated as

Lk =
c

2
3 ( 3√z− t+ 3√−z− t)−3− c2

3(1− c2)
,

where c = 2
1
k , t = 27+36c2+ c4 and z = (c2−1)

√
27(c2+27).

k 1 2 3 4 5 6 7

Lk 2.7423 5.5708 8.4388 11.3158 14.1962 17.0783 19.9614
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Consequences of the theorem

Corollary 1: In case of standard FEM discretization, if

ρ <
√

2π(L1−1)
ε

∥w0∥L∞

≈ 7.741 · ε

∥w0∥L∞

,

then the linear estimation of the CGN method is better in each step.

Corollary 2: In case of SDFEM discretization, if

ρ < 7.741 · ε

∥w0∥L∞

or ρ > 0.574 · Cw0

δ
,

then the linear estimation of the CGN method is better in each step.

Corollary 3: In case of SDFEM discretization, if

δ >
Cw0∥w0∥L∞√
2π(L1−1)2ε

≈ 0.0741 · Cw0∥w0∥L∞

ε
,

then the linear estimation of the CGN method is better in each step for
any ρ > 0.

Example: In case of w0 = (1, 0), ∥w0∥L∞ = 1 and Cw0 =
√

2.
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The actual residual norms and their linear estimation
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Superlinear convergence estimates

The linear estimates could not explain those parts of the graphs
where the GCR method performs better than the CGN method.

For further examination, I used the following two well-known
superlinear convergence estimates:

CGN:
(
∥rk∥S
∥r0∥S

) 1
k

≤
2∥A−1S∥2

S

k

k

∑
j=1

s2
j (E ) (k = 1, . . . ,N)

GCR:
(
∥rk∥S
∥r0∥S

) 1
k

≤ ∥A−1S∥S
k

k

∑
j=1

sj (E ) (k = 1, . . . ,N)

Here, S−1A= I +E , where E is an antisymmetric matrix, and
sj(E ) is the jth singular value of matrix E in decreasing order and
with multiplicity.
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Two specific results

Proposition: Let k ∈ {1, . . . ,N} be an arbitrary index and k ′ := 2k .
When using SDFEM discretization, if ε = 0 and w0 = (1, 0), then
the superlinear estimation of the GCR method in the k ′-th iterative
step is better than that of the CGN method if

ρ <
1

πδ

k
∑
j=1

1
j2

k
∑
j=1

1
j

≈ 1
πδ

π2

6
− 1

k

0.5772+lnk+
1
2k

.

Proposition: Let k ∈ {1, . . . ,N} be an arbitrary index. When using
standard FEM discretization, the superlinear estimation of the GCR
method in the kth iterative step is better than that of the CGN
method if

ρ >

k
∑
j=1

sj (E0)

2
k
∑
j=1

s2j (E0)

,

where E0 :=
1
ρ
E .
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Problem with the superlinear estimations
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A possible improvement: stronger estimate, higher accuracy

There exists a stronger superlinear estimation of the GCR method:

GCR:
(
∥rk∥S
∥r0∥S

) 1
k

≤ ∥A−1S∥S

(
k

∏
j=1

sj (E )

) 1
k

(k = 1, . . . ,N)
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