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The studied elliptic problem

Let us consider the following elliptic boundary value problem:

—eAu+w-Vu="f
ulpa =0

where Q = (0,1)? is the unit square, € > 0 is a constant,
w € C1(Q,R?) is a divergence-free vector field and f € L2(Q).

@ This models a stationary convection-diffusion process.

@ It is related to the linearized version of the Navier—Stokes
equations arising from fluid dynamics.

@ Convection-dominated problems form an important subclass:
ekl

@ The problem has a unique weak solution u € H}(S) such that
Jo (eVu-Vv+(w-Vu)v) = [ofv (Vv € H}(Q)).



| 3/17

Discretization methods

We approximate the solution with one of the following numerical
methods on the uniform grid of the unit square:

o FDM: Finite difference method, second-order central scheme.
e FEM: Finite element method, first-order Courant elements.
o SDFEM: Streamline diffusion finite element method for

convection-dominated problems with a stabilizing parameter
6>0.

Numerical solution
o o o 9o
o a2 o o

-0
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Nonsymmetric iterative methods

The discretization leads to a system of linear equations Au = b,
where matrix A is nonsymmetric.

This can be solved by one of the following iterative methods:
@ CGN: The conjugate gradient method applied to the normal
equation.

@ GCR: Minimization of the residual error in the Krylov subspace.

Preconditioning: In order to boost the rate of convergence, we
solve ST Au = S71b instead of the original system of equations,
T . .

where S := % is the symmetric part of matrix A.

Stop criterion: ||r,||s := \/(Srn, ) < TOL, i.e. when the S-norm
of the residual error vector decreases below a given threshold (e.g.
TOL =10719).
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Preconditioned CGN Preconditioned GCR
ug:=0; ug:=0;
ro:=S"1YAup—S1b; ro:=5"1h—S1Aug;
so:=S"1ATry; po = ro;
Po := So; 20 := S 1 Apo;
n:=0; n:=0;
while ||r,||s > TOL do while |r,||s > TOL do
z,:=S"1Ap,; L <fn72n>5.
2 On ="z
_lsall5 llzall5
T zall2 Un+1 = Un =+ CnPn;

I'n41 1= rn — QnZp;
Sp ‘= 5’1Arn+1;
for i=0,1,....,ndo

Up41 := Un~+ OnpPn;
i1 = rp+ QnZp;
smr1:=S1A T rpg;

Sn, Zj
ﬁ _ Hanrll@_ ﬁi,n::_< ns 12>$;
" sl EE
end
Pn+1 = Snt1+ Bnpn; ;
mi=ntl Pn1 = fn+1+.):ol3i,npi:
=

end )
Zpy1:=sp+ ¥ ﬁi,nzn;
i=0

n:=n+1,
end
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Comparison of the two iterative methods

Let us consider the following problem depending on the parameters
e>0and p>0:

—eAu+pwy-Vu=1
ulagn =0

Question: Which iterative method solves the resulting system of
linear equations Au = b in less iterative steps for different values of
€ and p?

Test problem: Consider the constant vector field wg := (1,0).

Numerical test: We fix the value of €, increase p starting from 0,
and plot the number of iterative steps until convergence for the
three discretization methods separately.

Implementation: MATLAB
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Numerical results: FDM and FEM
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Numerical results: SDFEM
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Linear convergence estimates

In order to explain the numerical results, | used the following two
well-known linear convergence estimates:

x|

CGN: (”rkH5> <ot M=m (k=1,...,N)
[rolls

1
urkus>k —
GCR: <y/1—(— k=1,...,N
(HfoHs <y\1-(m) ¢ )

Here, r. = S~ YAux — S~1b is the residual error in the kth iterative
step, and M > m > 0 are constants defined in the following way:

m:=inf{(Ac,c) : ||c|ls = 1}

M= ST Alls =sup{(Ac,d): |c|s = |d||s =1}



A general theoretical result for the linear estimates

Theorem: Let k € {1,...,N} be an arbitrary index. The linear
estimation of the GCR method in the kth iterative step is better
than that of the CGN method if and only if % > Ly, where Ly is

the unique real root of function

which can be calculated as

L

CS(ztr Yz -3¢

fi(x) = (1—45)x3 + (3+45)x% +3x + 1,

312

where ¢ =2k, t =27+36c2+c* and z = (2 — 1),/27(c2 + 27).

4

5

6

7

Ly

2.7423

5.5708

8.4388

11.3158

14.1962

17.0783

19.9614
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Consequences of the theorem

Corollary 1: In case of standard FEM discretization, if

E
2n(l1—1)—— = _
p<vam(l— 1) Twoll -

then the linear estimation of the CGN method is better in each step.
Corollary 2: In case of SDFEM discretization, if

£ Cw
<7741 ——— > 0.574- o
P wol= & P 5

then the linear estimation of the CGN method is better in each step.
Corollary 3: In case of SDFEM discretization, if

CW0HW0||L°°

~ V2r(Ly —1)2e

then the linear estimation of the CGN method is better in each step for
any p > 0.

G .
z0.0741.7‘“’°”8‘”0HL ,

Example: In case of wy = (1, 0), [[wg|/~» =1 and Gy, = V2.
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The actual residual norms and their linear estimation
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Superlinear convergence estimates

The linear estimates could not explain those parts of the graphs
where the GCR method performs better than the CGN method.

For further examination, | used the following two well-known
superlinear convergence estimates:

||rkus>i 2||A- lsns

CGN: ( k=1,...,N

lIrolls Jg’ ( )
||ka5> HA 15Hs a

GCR: ( k=1,...,N
llrolls ; ( )

Here, S"'A=/+ E, where E is an antisymmetric matrix, and
sj(E) is the jth singular value of matrix E in decreasing order and
with multiplicity.
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Two specific results

Proposition: Let k € {1,...,N} be an arbitrary index and k" := 2k.
When using SDFEM discretization, if € =0 and wg = (1, 0), then
the superlinear estimation of the GCR method in the k’-th iterative
step is better than that of the CGN method if

o l2 1

pe Ll 1 6k
P T
T K1 TG 5770 L ink+
j=1J 2k

Proposition: Let k € {1,...,N} be an arbitrary index. When using
standard FEM discretization, the superlinear estimation of the GCR
method in the kth iterative step is better than that of the CGN
method if

[l x

N \e!
<
-~
I
N

©
\Y
N .
M=
<,
—~
o
N

.
Il
—

where Egp := %E.
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Problem with the superlinear estimations
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A possible improvement: stronger estimate, higher accuracy

There exists a stronger superlinear estimation of the GCR method:

1
k

1

% k

GCR: (”'7(5) SHA715||5 HSJ'(E) (k:l,...7N)
l[rolls =1
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