Comparison of iterative methods for discretized nonsymmetric elliptic problems

Math Project III.

Lados Bálint István

Supervisor: Karátson János

Eötvös Loránd University

Department of Applied Analysis and Computational Mathematics

9 January, 2025

The studied elliptic problem

Let us consider the following elliptic boundary value problem:

$$
\begin{cases}\n-\varepsilon \Delta u + \mathbf{w} \cdot \nabla u = f \\
u|_{\partial \Omega} = 0\n\end{cases}
$$

,

where $\Omega=(0,1)^2$ is the unit square, $\varepsilon>0$ is a constant, $\mathsf{w}\in\mathcal{C}^1(\overline{\Omega},\mathbb{R}^2)$ is a divergence-free vector field and $f\in L^2(\Omega).$

- This models a stationary convection-diffusion process.
- **It is related to the linearized version of the Navier-Stokes** equations arising from fluid dynamics.
- Convection-dominated problems form an important subclass: $\varepsilon \ll 1$.
- The problem has a unique weak solution $u\in H^1_0(\Omega)$ such that $\int_{\Omega} (\varepsilon \nabla u \cdot \nabla v + (\mathbf{w} \cdot \nabla u) v) = \int_{\Omega} fv \qquad (\forall v \in H_0^1(\Omega)).$

Discretization methods

We approximate the solution with one of the following numerical methods on the uniform grid of the unit square:

- FDM: Finite difference method, second-order central scheme.
- FEM: Finite element method, first-order Courant elements.
- SDFEM: Streamline diffusion finite element method for convection-dominated problems with a stabilizing parameter $\delta > 0$.

Nonsymmetric iterative methods

The discretization leads to a system of linear equations $Au = b$, where matrix A is nonsymmetric.

This can be solved by one of the following iterative methods:

- **CGN:** The conjugate gradient method applied to the normal equation.
- **GCR:** Minimization of the residual error in the Krylov subspace.

Preconditioning: In order to boost the rate of convergence, we solve $S^{-1}Au = S^{-1}b$ instead of the original system of equations, where $S := \frac{A+A^{T}}{2}$ $\frac{A^2}{2}$ is the symmetric part of matrix A.

<code>Stop</code> criterion: $\|r_n\|_S := \sqrt{\langle S r_n, r_n \rangle} <$ TOL, i.e. when the S -norm of the residual error vector decreases below a given threshold (e.g. $TOL = 10^{-10}$).

Preconditioned CGN

$$
u_0 := 0;
$$

\n
$$
r_0 := S^{-1}Au_0 - S^{-1}b;
$$

\n
$$
s_0 := S^{-1}A^T r_0;
$$

\n
$$
p_0 := s_0;
$$

\n
$$
n := 0;
$$

\nwhile $||r_n||_S > TOL$ do
\n
$$
z_n := S^{-1}Ap_n;
$$

\n
$$
\alpha_n = -\frac{||s_n||_S^2}{||z_n||_S^2};
$$

\n
$$
u_{n+1} := u_n + \alpha_n p_n;
$$

\n
$$
r_{n+1} := r_n + \alpha_n z_n;
$$

\n
$$
s_{n+1} := S^{-1}A^T r_{n+1};
$$

\n
$$
\beta_n = \frac{||s_{n+1}||_S^2}{||s_n||_S^2};
$$

\n
$$
p_{n+1} := s_{n+1} + \beta_n p_n;
$$

\n
$$
n := n+1;
$$

\nend

Preconditioned GCR

$$
u_0 := 0;
$$

\n
$$
r_0 := S^{-1}b - S^{-1}Au_0;
$$

\n
$$
p_0 := r_0;
$$

\n
$$
z_0 := S^{-1}Ap_0;
$$

\n
$$
n := 0;
$$

\nwhile $||r_n||_S > TOL$ do
\n
$$
\alpha_n := \frac{\langle r_n, z_n \rangle_S}{||z_n||_S^2};
$$

\n
$$
u_{n+1} := u_n + \alpha_n p_n;
$$

\n
$$
r_{n+1} := r_n - \alpha_n z_n;
$$

\n
$$
s_n := S^{-1}Ar_{n+1};
$$

\nfor $i = 0, 1, ..., n$ do
\n
$$
\beta_{i,n} := -\frac{\langle s_n, z_i \rangle_S}{||z_i||_S^2};
$$

\nend
\n
$$
p_{n+1} := r_{n+1} + \sum_{i=0}^n \beta_{i,n} p_i;
$$

\n
$$
z_{n+1} := s_n + \sum_{i=0}^n \beta_{i,n} z_n;
$$

\n
$$
n := n + 1;
$$

\nend

Comparison of the two iterative methods

Let us consider the following problem depending on the parameters $\varepsilon > 0$ and $\rho > 0$:

$$
\begin{cases}\n-\varepsilon \Delta u + \rho \mathbf{w}_0 \cdot \nabla u = 1 \\
u|_{\partial \Omega} = 0\n\end{cases}
$$

Question: Which iterative method solves the resulting system of linear equations $Au = b$ in less iterative steps for different values of ε and ρ ?

Test problem: Consider the constant vector field $w_0 := (1,0)$.

Numerical test: We fix the value of ε , increase ρ starting from 0, and plot the number of iterative steps until convergence for the three discretization methods separately.

Implementation: MATLAB

Numerical results: FDM and FEM

Numerical results: SDFEM

Value of ρ

Linear convergence estimates

In order to explain the numerical results, I used the following two well-known linear convergence estimates:

CGN:

\n
$$
\left(\frac{\|r_k\|_S}{\|r_0\|_S}\right)^{\frac{1}{k}} \leq 2^{\frac{1}{k}} \frac{M-m}{M+m} \qquad (k = 1, \ldots, N)
$$
\n**GCR:**

\n
$$
\left(\frac{\|r_k\|_S}{\|r_0\|_S}\right)^{\frac{1}{k}} \leq \sqrt{1 - \left(\frac{m}{M}\right)^2} \qquad (k = 1, \ldots, N)
$$

Here, $r_k = S^{-1} A u_k - S^{-1} b$ is the residual error in the k th iterative step, and $M > m > 0$ are constants defined in the following way:

$$
m := \inf \{ \langle Ac, c \rangle : ||c||_S = 1 \}
$$

$$
M := ||S^{-1}A||_S = \sup \{ \langle Ac, d \rangle : ||c||_S = ||d||_S = 1 \}
$$

A general theoretical result for the linear estimates

Theorem: Let $k \in \{1, ..., N\}$ be an arbitrary index. The linear estimation of the GCR method in the kth iterative step is better than that of the CGN method if and only if $\frac{M}{m} > L_k$, where L_k is the unique real root of function

$$
f_k(x) = (1 - 4^{\frac{1}{k}})x^3 + (3 + 4^{\frac{1}{k}})x^2 + 3x + 1,
$$

which can be calculated as

$$
L_k = \frac{c^{\frac{2}{3}}(\sqrt[3]{z-t} + \sqrt[3]{-z-t}) - 3 - c^2}{3(1-c^2)},
$$

where $c = 2^{\frac{1}{k}}$, $t = 27 + 36c^2 + c^4$ and $z = (c^2 - 1)\sqrt{27(c^2 + 27)}$.

Consequences of the theorem

Corollary 1: In case of standard FEM discretization, if

$$
\rho < \sqrt{2}\pi (L_1-1) \frac{\epsilon}{\|{\mathbf{w}}_0\|_{L^\infty}} \approx 7.741 \cdot \frac{\epsilon}{\|{\mathbf{w}}_0\|_{L^\infty}},
$$

then the linear estimation of the CGN method is better in each step. Corollary 2: In case of SDFEM discretization, if

$$
\rho < 7.741 \cdot \frac{\varepsilon}{\|\mathbf{w}_0\|_{L^\infty}} \quad \text{or} \quad \rho > 0.574 \cdot \frac{C_{\mathbf{w}_0}}{\delta},
$$

then the linear estimation of the CGN method is better in each step. Corollary 3: In case of SDFEM discretization, if

$$
\delta > \frac{C_{\mathbf{w_0}}\|\mathbf{w_0}\|_{L^\infty}}{\sqrt{2}\pi (L_1-1)^2\epsilon} \approx 0.0741\cdot \frac{C_{\mathbf{w_0}}\|\mathbf{w_0}\|_{L^\infty}}{\epsilon},
$$

then the linear estimation of the CGN method is better in each step for any $\rho > 0$.

Example: In case of $w_0 = (1, 0)$, $||w_0||_{L^{\infty}} = 1$ and $C_{w_0} =$ √ 2.

The actual residual norms and their linear estimation

Superlinear convergence estimates

The linear estimates could not explain those parts of the graphs where the GCR method performs better than the CGN method.

For further examination, I used the following two well-known superlinear convergence estimates:

CGN:
$$
\left(\frac{\|r_k\|_S}{\|r_0\|_S}\right)^{\frac{1}{k}} \le \frac{2\|A^{-1}S\|_S^2}{k} \sum_{j=1}^k s_j^2(E)
$$
 $(k = 1,..., N)$
GCR: $\left(\frac{\|r_k\|_S}{\|r_0\|_S}\right)^{\frac{1}{k}} \le \frac{\|A^{-1}S\|_S}{k} \sum_{j=1}^k s_j(E)$ $(k = 1,..., N)$

Here, $S^{-1}A=I+E$, where E is an antisymmetric matrix, and $s_i(E)$ is the *j*th singular value of matrix E in decreasing order and with multiplicity.

Two specific results

Proposition: Let $k \in \{1, ..., N\}$ be an arbitrary index and $k' := 2k$. When using SDFEM discretization, if $\varepsilon = 0$ and $\mathsf{w}_0 = (1,\,0)$, then the superlinear estimation of the GCR method in the $\vec{k'}$ -th iterative step is better than that of the CGN method if

$$
\rho < \frac{1}{\pi\delta} \frac{\sum\limits_{j=1}^{k} \frac{1}{j^2}}{\sum\limits_{j=1}^{k} \frac{1}{j}} \approx \frac{1}{\pi\delta} \frac{\frac{\pi^2}{6} - \frac{1}{k}}{0.5772 + \ln k + \frac{1}{2k}}
$$

.

Proposition: Let $k \in \{1, ..., N\}$ be an arbitrary index. When using standard FEM discretization, the superlinear estimation of the GCR method in the kth iterative step is better than that of the CGN method if

$$
\rho>\frac{\sum\limits_{j=1}^k s_j(E_0)}{2\sum\limits_{j=1}^k s_j^2(E_0)},
$$

where $E_0 := \frac{1}{\rho}E$.

Problem with the superlinear estimations

FEM

SDFEM δ = 10⁻²

A possible improvement: stronger estimate, higher accuracy

There exists a stronger superlinear estimation of the GCR method:

$$
\text{GCR: } \left(\frac{\|r_k\|_S}{\|r_0\|_S} \right)^{\frac{1}{k}} \le \|A^{-1}S\|_S \left(\prod_{j=1}^k s_j(E) \right)^{\frac{1}{k}} \qquad (k=1,\ldots,N)
$$

References

Thank you for your attention!

Nachtigal, N. M.; Reddy, S. C.; Trefethen, L. N.: How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal. Appl. Vol. 13, No. 3, pp. 778-795, July 1992.

Saad, Y.:

Iterative methods for sparse linear systems.

SIAM, Philadelphia, 2003.

Axelsson, O.; Karátson, J.; Kovács, B.:

Robust Preconditioning Estimates for Convection-Dominated Elliptic Problems via a Streamline Poincaré–Friedrichs Inequality.

SIAM Journal on Numerical Analysis, Vol. 52, Iss. 6, 2014.

Karátson, J.:

Superlinear Krylov convergence under streamline diffusion FEM for convection-dominated elliptic operators.

Numer. Linear Algebra Appl. 2024;e2586.