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Introduction, motivations

• Our main task was to �lter out data observed with noise.

• The problem of Stochastic Block Model (SBM):
reconstructing homogeneous, dense communities in the vertex
set of a random graph.

• Di�erences between SBM and Z2 synchronization.

• Finally, I applied the Stochastic Block Model to a larger
deterministic graph (obtained from real data) as well.
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Stochastic Block model

• Let us assume that x ∈ {1,−1}n, where the i-th coordinate of
x is 1 if the i-th vertex belongs to the �rst group (I ) and −1 if
to the second group (J = V /I ; for i = 1 . . . n = |V |).

• The distribution of the entries of adjacency matrix of our
random graphs looks like this: (0 < q < p < 1, we draw the
edges independently from one another)

P(Aij = 1) =

{
p = pin, if i ∈ I and j ∈ I , or i ∈ J and j ∈ J,

q = pout , otherwise
.

• The algorithm written in the article by Abbe, Fan, Wan and
Zhong ([1]) wants to estimate x , we need to calculate the
second eigenvector of the random adjacency matrix A:

• Compute u2, the eigenvector of A corresponding to its second
largest eigenvalue λ2.

• Set x̂ i := sgn(ui2).
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Some metrics for the quality of classi�cation.

• The natural de�nition of the misclassi�cation rate when
estimating x with x̂ :

r(x , x̂) :=
1

n

n∑
i=1

1{xi ̸=x̂i}.

,

• The L2 distance between the separating and estimated vector
can be estimated by averaging such observations:

∥x − x̂∥2 =

√√√√ n∑
i=1

(xi − x̂i )2.
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Simulation Data

• V = {1, 2, 3, . . . 600} (vertex set), I = {1, 2, 3, . . . 300} (�rst
group), J = {301, 302, 303, . . . 600} (second group).

• We generated 8 di�erent graphs independently from one
another for every pin and pout pair.

• We calculated the average of the metrics for every pin and pout
pair.
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Figure: The average of the missclassi�cation rates
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Figure: The average of the 2-norms of the di�erences
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First theorem (SBM)-Abbe, Fan, Wang, Zhong:

• Let us assume that the edge probabilities satisfy the following
equations:

•
p := a · ln (n)

n
and q := b · ln (n)

n
.

• If
√
a−

√
b >

√
2 then there exist an η(a, b) > 0 and

s ∈ {1,−1} such that with probability 1− o(1)

lim
n→∞

(√
n · min

i∈[n]

(
s · xi · ui2

))
≥ η(a, b).

• And if 0 <
√
a−

√
b ≤

√
2, the misclassi�cation rate will not

be too high on average:

E

[
min

s∈{±1}

1

n

n∑
i=1

1{xi ̸=sx̂i}

]
≤ n−(1+o(1)) (a−b)2

2 .
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Figure: Histogram of
√
n · u2 coordinates (p = 0.55, q = 0.43)
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Figure: Histogram of
√
n · u2 coordinates (p = 0.65, q = 0.43)
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The problem of Z2 synchronization

• In the Z2 synchronization problem, we observe noisy versions
of random ±1 values and aim to �lter out the noise, which is
typically chosen from a normal distribution. We assume that
we know the random matrix Y , generated as follows:

Yij = xi · xj + σ ·Wij , where x ∈ {±1}n,

i < j ⇒ Wij ∼ N(0, 1), σ > 0, Wii = 0, Wij = Wji .

• Let us further assume that variables {Wij : i < j} are
independent from one another.

• Our aim is to recover x from Y .

• The algorithm of Abbe, Fan, Wan, and Zhong estimates the
values as follows:

• Compute the leading eigenvector of Y , denoted by u;

• Take the estimate x̂i := sgn(ui ).

Sebestyén Kovács
Random matrices, perturbations and their applications in
statistics



Second theorem (Z2 synchronization)-Abbe, Fan, Wang,
Zhong:

• A: We suppose that σ ≤
√

n

(2+ ε) log n
for some ε > 0.

• E : With probability 1− o(1), the leading eigenvector u of Y
with unit ℓ2 norm satis�es

√
n · min

i∈[n]
{s · xi · ui} ≥ 1−

√
2

2+ ε
+

C√
log n

,

• for a suitable s ∈ {±1}, where C > 0 is an absolute constant.
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Own simulation-combining the SBM and the Z2

synchronization problem

• We �xed two edge probabilities:p = 0.5 and q = 0.4, and then
independently generated ten random graphs, each with 600
vertices, using these probabilities.

• To the adjacency matrix of each graph, we added a scaled
version of a 600× 600 symmetric matrix sampled from a
standard normal multivariate distribution with the scaling
factor σ varying according to the noise levels.

• Di�erence from Z2 synchronization: we added noise not to
x · x⊤ but to the adjacency matrices.
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Own simulation-combining the SBM and the Z2

synchronization problem

• Here, the error could arise from two sources: �rst, the edges
themselves are random; second, we could only observe the
adjacency matrix in a noisy environment.

• I applied the stochastic block model algorithm to the noisy
adjacency matrices and evaluated the average accuracy of the
reconstruction with the added noise.

• For my case, σ = 0.4 was the highest noise level where the
misclassi�cation rate did not exceed 5%.
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Own simulation-combining the SBM and the Z2

synchronization problem

Figure: The average misclassi�cation rates with di�erent noises,

pin = 0.5, pout = 0.4
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Own simulation-combining the SBM and the Z2

synchronization problem

Figure: The average misclassi�cation rates with noise σ = 0.4
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Own simulation-combining the SBM and the Z2

synchronization problem

Figure: The histogram of the coordinates of
√
n · u2 with pin = 0.65,

pout = 0.43, σ = 1
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Own simulation-combining the SBM and the Z2

synchronization problem

Figure: The histogram of the coordinates of
√
n · u2 with pin = 0.65,

pout = 0.43, σ = 0.4
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Application on real data

• I tested the stochastic block model algorithm on a
deterministic graph as well, where the edge between two
vertices does not depend on randomness.

• The description of our graph is as follows: "This network was
constructed from the USA's FAA (Federal Aviation
Administration) National Flight Data Center (NFDC),
Preferred Routes Database. Nodes in this network represent
airports or service centers and links are created from strings of
preferred routes recommended by the NFDC." ([7])

• The graph contained 1, 226 vertices and 2, 615 edges.
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Application on real data-cohesion-related indicators

• An interesting question is whether the individual cohesions
within the graph are stronger within the groups generated by
the Stochastic Block Model. Such cohesion-related indicators
include edge density and the clustering coe�cient:

• The density of a graph with n vertices and m edges is
m(n
2

) .
This indicates how dense the edges are in the graph relative to
the complete graph.

• The overall clustering coe�cient of the graph is the average of
the clustering coe�cients of all vertices:

C =
1

n
·
∑
v∈V

|{{u,w} ∈ E : u,w ∈ N (v)}|(deg(v)
2

) .
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Figure: The two groups of our graph
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Edge density and clustering coe�cient in the entire graph
and in its groups

Number of nodes in Group 1: 616

Number of nodes in Group 2: 610

Edge density in the entire graph: 0.0032

Clustering coe�cient in the entire graph: 0.0675

Edge density in Group 1: 0.0054

Edge density in Group 2: 0.0063

Clustering coe�cient in Group 1: 0.0900

Clustering coe�cient in Group 2: 0.1031
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Air tra�c control
(http://konect.cc/networks/maayan-faa/)
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Thank you for your attention!
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