Quantile sketch algorithms

— MATH PROJECT —

Author:

Levente Birszki
Applied Mathematics MSc

Supervisors:

Dr. Gabor Rétvari Dr. Balazs Vass

Senior Research Fellow Assistant Lecturer

Eo6tvos Lorand University
Faculty of Science
Budapest, 2024.

1 Introduction

Within the scope of the project, I dealt with the quantile sketch algorithms in database appli-
cations. It is a well-researched area of mathematics that has many practical applications such
as big data [1], distributed systems [2] and the area that led me here, network traffic monitor-
ing. Within the latter, quantile sketches are used, for example, catching heavy flows [3], attack
detection [4] and even in traffic control [5].

Our main goal was to create a self-improving quantile sketch that becomes faster as it pro-
cesses more data. The purpose of this report is to present the problem and the results achieved
so far, along with the asymptotic bounds. I also present some improvements to a fundamental
sketching algorithm, whose efficiency I demonstrate through practical measurements.

2 The quantile problem

A sketch S(X) of some data set X with respect to some function f is a compression of X that
allows us to compute, or approximately compute f(X) given access only to S(X). A streaming
algorithm is processing data streams in which the input is presented as a sequence of items and
can be examined only in one pass. Streaming algorithms often produce approximate answers
based on a sketch of the data stream.

Given a stream of items yy,y»,...,y, in some arbitrary order, and let x; < xp,< ... <x, the
sorted sequence. If its necessary, we can assume, that all the elements are distinct, since instead
of y; we can take (y;,i) with lexicographical ordering.

Definition 2.1. Given an x element from the input stream. r(x), the rank of x is the number of
elements smaller or equal than x in the sorted input.

Definition 2.2. The g-quantile for g € [0,1] is defined to be the element in position [gn] in
the sorted sequence of the input. In other words, the element whose rank is [gn|. Denote this
element with x,.

There are different versions of this problem. Sometimes an element x is given, and we need
to compute r(x), and sometimes the opposite; given a rank r (or a quantile ¢) and the task is
to return the item from the stream, with rank r (or [gn]). But usually if we can answer one
question, we can also answer the other.

2.1 Theoretical results

Munro and Paterson [6] showed that Q(nl/ P) space is required to determine the quantile ¢ with
p passes. Furthermore, Blum, Floyd, Pratt, Rivest and Tarjan [7] showed, that we need at least
1.5n comparisons to compute an exact median of a data set of size n. This paper also shows,
that 5.43n comparisons is always sufficient for any quantile.

Later Dor and Zwick showed, that the lower bound for the median is (2 + 2_40)11, [8], and
the upper bound for an arbitrary quantile 2.9423n [9].

Typically we only have opportunity to a one-pass algorithm, and with limited space, there-
fore our main goal is to approximate the quantiles.

Definition 2.3. An element % is an €-approximate ¢ quantile if [(¢ —&)n]| < r(%;) < [(g+€)n].
In other words |r(x,) — r(%;)| < en. This also known as rank error.

Remark. There are other possible ways to define the error of an approximation, e.g. relative
error, which is defined in the paper in which DDSketch was introduced [10]: X, is an a-accurate
g-quantile if |%, — x4| < axg, for a given x,. Since most algorithms use the rank-error, I also
use that in the following.

In 1974 Yao showed, that computing an approximate median requires Q(n) comparisons for
any deterministic algorithm. In 2016 Hung and Ting [11] proved, that any comparison-based
algorithm for finding €-approximate quantiles needs Q(% log %) space.

3 Major milestones

Definition 3.1. In the single quantile approximation problem, given an x1, . .., X, input stream in
arbitrary order, g, € and 8. Construct a streaming algorithm, which computes an €-approximate
g-quantile with probability at least 1 — 0.

Definition 3.2. In the all quantiles approximation problem, given an xi,...,x, input stream in
arbitrary order, € and 6. Construct a streaming algorithm, which computes an €-approximate
g-quantile with probability at least 1 — 0 for all ¢ simultaneously.

Definition 3.3. A sketching algorithm is (fully) mergeable, if given two sketches S| and $;
created from inputs X; and X», a sketch S of X := X; U X, can be created with no degradation in
quality of error or failure probability, and satisfying the same efficiency constraints as Sy, S,.

Publication Algorithm Space Complexity Properties
1988 MRL[12) O(tlogen) determinise, comparison-bised
1988 MRLII2] O(tlog?+Llogtlogh) OO S e
001 GK[13 0t og(en) determinise, comparison-bised
2004 q-digest [14] O(é logu) determiE(setri??)izaailn?\?earrslgl(ff size u)
2016 KLL[I3 O(ttog’log §) randonnied. somparison-based
2016 KLL[I3 O(tlog’log ;) randomised, comparison-besed
2016 KLL [15] O(loglog 5) Qﬁ‘&ﬁﬁ‘?‘l‘iﬁ;ﬁi‘iSJ?EQLZ
006 KLLOSL olzled) e
017 FO [16] o(é log é) non-mergeable, all quantiles

randomized, comparison-based

non-mergeable, all quantiles
2019 SweepKLL [17] O(é loglog %)) randomized, comparison-based
runtime is O(log 1) instead of O(%)

Its worth to mention two other sketches; QPipe [18] which is an accelerated version of
SweepKLL, and can be fully implemented in the data plane of a programmable switch, and
Moment Sketch [19], which has no rank error guarantees, but its widely used in practice.

2

4 MP-sketch

In 1998 Manku, Rajagopalan and Lindsay gave a solution to all quantile approximation problem
[12], based on the work of Munro and Peterson [20]. They gave a uniform framework for
three sketching algorithms, including the original MP-sketch. In the followings I'll sum up the
framework, based on their paper.

Remark. Originally MRL was used for databases. If we want to use it for data streams, we
need some clever sampling, e.g. reservoir sampling [21].

In this framework, we have b buffers, each can store k elements. for each buffer X, we
associate a positive integer w(X), whits denotes its weight. Intuitively, the weight of a buffer is
the number of elements represented by each element in the buffer. There are three operations
on a buffer, New, Collapse and Quantile.

4.1 New(X) operation

It takes an empty buffer X as an input. The operation simply populates the input buffer with
the next k elements from the input stream, and set w(X) = 1. If the buffer cannot be filled
completely, because there are less than k remaining elements in the input stream, an equal
number of —e and o elements are added to make up the deficit.

4.2 Collapse(X;,Xs,...,X.) operation

It takes ¢ > 2 full input buffers, X1,X>,...,X. and out-
puts a buffer Y, which is physically use the same space Figure 1: Collapse illustrated.
as X1. The weight of the output buffer is the sum of the

C
weights of the input buffers, so w(Y) = ¥, w(X;).
=1

OvuTPUT:

235283114 143 weight 9.

1=
Consider making w(X;) copies of each elementin | . " P

X; and sorting all the input buffers together, taking into o s
12

account the multiple copies. The elements of Y are k | 44 4 41 =
72 72 83 83

33 a3 33 44
64 64 64 64
94 94 94 94

equally spaced elements in this (sorted) sequence. 02 102 114 114 14 124 124 124
124 132 132 143 143 153 153 183
. . InpPUT:
4.3 Quantlle(q) operation 12 52 72 102 132 weight 2,
233383 143 153 weight 3,
44 6494 114 124 weight 4.

This operation is invoked only after the end of the input
stream, when all the elements are processed by the data
structure, and there is only one full buffer X, as the re-
sult of a Collapse operation. It returns the g - k element
of buffer X.

4.4 Algorithms

An algorithm for computing approximate quantiles consists of a series of invocations of New
and Collapse, and then we can use Quantile as many times, as needed. The key difference
between algorithms from this family is the collapse policy. New populates empty buffers, and
Collapse reclaims some of them by collapsing a chosen set of full buffers. In figure 2 we can
see two different collapsing policies.

32 .9

L}
1111'11111 111711 11

111111131111111111111111111111111 11

(a) MP-sketch for b = 6 buffers. (b) MRL-sketch for b = 5 buffers.

Figure 2: Different collapsing policies.

5 GK-sketch

This data structure was created by Greenwald and Khanna in 2001 [13]. It is widely used due
to its simplicity and efficiency, and it serves as the basis for many applications in the field of
quantile sketches. For example, the asymptotically optimal version of the KLL-sketch and the
special case where the desired quantiles are predetermined [22].

We build a summary data structure S := S(s) consisting of s elements, where we store tuples
ti = (vi, gi,Ai). These are composed of the following:

* v;: one of the elements seen so far.

* & = Tmin(Vi) — Fmin(Vi-1)-

* Ai = rmax (Vi) — min (Vi)

Using these, the following values can be calculated:

* rmin(vi) = ¥ g/, a lower bound for r(v;).
j<i
* rmax(vi) = ¥ gj+ A, an upper bound for r(v;).
J<i
* Therefore, rmax(vi) — rmin(vi—1) — 1 = gi +A; — 1 is an upper bound for the number of
observations that may have fallen between v;_; and v;.

s—1
° rmin(VO) = rmax(VO) =1and rmin(vs—l) = rmax(Vs—l) = n, thus .Zogi =n.
i=

Proposition 5.1. Given a quantile summary S, a q-quantile can always be identified within an
error of max(g; + A;) /2.
l

Corollary 5.1. If at any time n, the summary S(n) satisfies the property that max;(g; + A;) <
2¢en, then we can answer any q-quantile query with € rank error.

This data structure has four essential operations.

5.1 Quantile(q)

r:= [gn]. Find i such that both r — ryn (v;) < €n and rmax (vi) —r < €n, and return v;. This is
possible based on Proposition 5.1 and Corollary 5.1. The tuples are stored in an array, and this
index can be found via binary search in O(logs) time.

5.2 Insert(v)

Find the smallest i such that v;_; < v < v;, and insert the tuple (v, 1, |2&n]|) between ;1 and ¢;.
Increment s. As a special case, if v is the new minimum or maximum observation seen, insert
(v,1,0). This operation maintains the correct relationships between g;, A;, Fmin(vi), and rmax (v;)
by modifying the g; value of the element after the newly inserted one. Runtime is O(logs). If
gi+Ai = |2€n], it invokes a Compress() operation.

5.3 Delete(v)

Replace (vi,gi,A;) and (viy1,8i+1,Ai+1) with the new tuple (vii1,g; + gi+1,Ai+1), and decre-
ment s. This operation maintains the correct relationships between g;, A;, rmin(vi), and rmax (v;)
by modifying the g; value of the element after the recently deleted one. Runtime is O(logs).

5.4 Compress()

The high-level concept is to traverse the tuples of S(n) from right to left. When a mergeable
pair (¢;,;11) is found, merge ¢; into ;;1, as well as other tuples that are descendants of ¢; in a
special tree representation.

6 KLL-sketch

This sketch was developed by Khanna, Lang, and Liberty in 2016 [15]. It is similar to the
MRL-sketch but also incorporates the GK-sketch. Instead of buffers, it uses compactors, and in
the tree, each level has exactly one compactor. When a compactor fills up, it retains only every
second element from its sorted array, sends the retained elements to the next level, and then
clears itself.

6.1 Basic Idea

A compactor can store k items, all with the same weight w. It can also compact its k elements
into k/2 elements of weight 2w.

* Total items in the sequence: n.

* Number of compactors storing these items: n/k.

Let H denote the maximum number of compactors chained together. Each compactor
halves the number of elements: H < [log 7| (height of the tree).

Let & denote the height of a compactor. The bottom level has a height 4 = 1, so wj, =21

Let mj, denote the number of compact operations it performs at height h: m;, = %

* Summing up the errors:

Hn nlogg
k k

S

H H
¥ i~ Y
h=1 h=1

* Since there are H compactors, the space usage is kH < klog 7.

Setting k := 0(%log €n), the error guarantee becomes ne, and the space usage becomes
Llog? en.
€
6.2 Improvements

6.2.1 Randomized Compression and Input Sampling

The contribution of Agarwal et al. [23] is to have each compactor randomly delete either the
odd or even items with equal probability. This reduces the error guarantee to 0(10g3/ 2 %)

For n > poly(%), we can sample items from the stream before feeding the sketch. For the

single quantile problem, this yields a space usage of %log (é) \/log %, and for the all quantiles
problem, élog (%) \/log 8%

6.2.2 Different Sized Compactors

Let kj, ~ kg - (%)Hﬁh. This approach does not affect the error bounds but improves space com-
plexity.

* Lower levels have smaller compactors.

* A compactor chain with capacity 2 and randomization is essentially sampling. Denote
the number of such compactors by H”.

» The total capacity of all compactors with capacity greater than 2 is:
H H—h
2
Y «k (—) <3k
i1 \3
* Space complexity is therefore O(k).

Setk:=0 <é, /log %) This gives a space complexity of O(k) for the single quantile prob-

lem, and O (%@ /log é) for the all quantiles problem.

6.2.3 Using GK-sketch

Handle the top log log% levels of compactors differently. Use fixed kj, values instead of dimin-
ishing values. Thus, k;, =k when h > H — O (log log %) Analyzing these top levels differently

yields a space complexity of O (% log®log %) Up to this point, the sketch remains fully merge-
able.
If we replace the top loglog % compactors with the GK-sketch, the space complexity reduces

to O (é loglog %) This final step, however, prevents mergeability.

6

7 MP-sketch Improvements

Our primary objective was to design a sketching algorithm that enhances its performance by
leveraging its own predictions. For instance, a sketching algorithm for quantile estimation could
approximate the CDF of the input stream. We hypothesize that having prior knowledge about
the distribution of the input would enable us to compute its quantiles more efficiently. This
specific goal was not achieved, but some of the tools we examined could be useful in various
applications. In the following, we present these tools.

In MP-sketch, if we invoke Collapse on some buffers with w(X;) = 1, each buffer must first
be sorted individually. Once this step is completed, all buffers on which Collapse was applied
will be sorted. The final step involves performing a modified version of merge sort. Based
on the measures, sorting the buffers is the slowest part of the algorithm, as shown in Figure 3.
Thus, the first idea is to speed this up.

push
other

Biiver

merge merge

Figure 3: Operation proportions to the runtime in the original sketch. n = 10° left, n = 10°
right.

7.1 Sorting with prediction

This section summarizes the results of Bai and Coester [24] and presents the operation of their
algorithm. Their sorting algorithm uses a positional predictor p, and a scapegoat tree with a
finger.

7.1.1 Scapegoat Tree

A Scapegoat tree is a self-balancing binary search tree, invented by Arne Andersson [25]. It
realizes the Search, Insert, and Delete operations in O(logn) amortized time. In our case, the
Delete operation is not needed.

The Search operation is is not modified from a standard binary search tree, and has a worst-
case time of O(logn).

The insertion operation is complicated. There is a "loosely a-height-balanced" invariant
property of the scapegoat tree, which means

height(tree) < [log, /, size(tree) | + 1.

Unlike most other self-balancing search trees, scapegoat trees are entirely flexible as to their
balancing. They support any ¢ such that 0.5 < a < 1. A high « value results in fewer balances,
making insertion quicker but lookups and deletions slower, and vice versa for a low «.

When inserting a new node, we need to record its height. If it violates the height-balanced
property, then a re-balance is required. First we need to find a scapegoat node. This is a node
with the following properties.

size(left) < a - size(node)
size(right) < o - size(node)

We start the search for the scapegoat node at the newly inserted node and move upwards
along the parent pointers. In fact, at each step, it is sufficient to calculate the size of the sibling
subtree since we already know the size of the current node’s subtree; it is initially 1, and as
we move upwards, we keep track of it. The size of the parent is the sum of the size of its two
children plus 1, so knowing the size of the sibling node, this can also be easily computed.

Once the scapegoat is found, the subtree rooted at the scapegoat is completely rebuilt to be
perfectly balanced. This can be done in O(n) time by traversing the nodes of the subtree to find
their values in sorted order and recursively choosing the median as the root of the subtree. It
can be seen that the worst-case time for the Insertion operation is O(n), but since this operation
rarely needs to be performed, the amortized number of steps is O(logn).

In addition to the scapegoat tree, we also need a finger. When we talk about search trees,
a finger is a pointer to one of the nodes of the tree, providing direct O(1) access to that node.
This could point to the smallest, or the largest node, but in our setting it will point to the last
inserted node. The idea behind this is that when we insert a value into the tree that is not too far
from the previous value, it is faster to find its place from here than from the root.

7.1.2 Sorting

LetA =aj,...,a, be an array of n items, equipped with a strict linear order <. Let p : [n] — [n]
be the permutation that maps each index i to the position of a; in the sorted list.

Definition 7.1 (Positional predictor). In sorting with positional predictions, the algorithm re-
ceives for each item q; a prediction p(i) of its position p(i) in the sorted list. We allow p to be
any function [n] — [n], which need not be a permutation (i.e., it is possible that p(i) = p(j) for
some i # j).

The error of a positional prediction can be naturally quantified by the displacement of each
element’s prediction; that is, the absolute difference of the predicted ranking and the true rank-
ing. We define the displacement error of item q; as

ni = 1p(i) — p(i)-

The sorting method is as follows. We first bucket sort (in time O(n)) the items in A based
on their predicted positions, such that we may assume for all i < j that p(i) < p(j). Following
the rearranged order, items in A are sequentially inserted into an initially empty finger tree 7.
After all insertions, we obtain the exactly sorted array by an inorder traversal of T'.

Theorem 7.1. Algorithm 1 sorts an array within O(Y}_, log(Tll-A +2)) running time and com-
parisons.

Algorithm 1 Sorting with prediction
Input: A =ay,...,a,, prediction p
BucketSort(A, p)
T < an empty scapegoat tree with finger.

N<+n
fori=1,...,ndo

Insert g; into 7.
end for

return nodes in 7 in sorted order (via inorder traversal)

7.1.3 Application

In some network applications, it is necessary to determine the rank of elements, that is, how
many elements are not greater than a given one. If this is the case, it can be considered as a
freely available positional predictor and can be applied using the method described above.

If these predictions are not provided, we can use the sketch itself to generate such predic-
tions. To estimate r(x), we perform a binary search in the buffer at the highest level to find the
first element that is not smaller than x. As a predictor, the earlier estimate for €-relative error
will be correct as long as the distribution of elements does not change over time. If the elements
stored in the buffer do not represent the distribution, we still get an O(klogk)-time algorithm
asymptotically, similar to traditional sorting.

If the keys are integers, we can do even better using a clever data structure and maintain the
buffer in sorted order during every insertion. This eliminates the need for sorting, though each
insertion will no longer be a constant-time operation. We aim to achieve better amortized time
for filling the buffer than O(klogk).

Figure 4, displayed on a logarithmic scale, shows the number of comparisons required to
sort an array using std: :sort, as well as with the best-case and worst-case predictors, for
different buffer sizes. We can observe that if the predictor is sufficiently good, only O(k) com-
parisons are needed instead of O(klogk).

7.2 x-fast trie

This structure was proposed by Dan Willard in 1982, [26] along with the y-fast trie, which can
be used alternatively in our algorithm for slightly better space complexity. It uses a log M deep
bitwise trie for storing integers, where M denotes the maximum value among the stored values.
The leaves are stored in a doubly-linked list.

However, we do not store it as a traditional tree with parent and child pointers. Each level is
stored in a hash table, and for the nodes, we only store 2 pointers, which we will call min and
max. We will only need these if a node doesn’t have a left or right child in the tree representa-
tion. If a node has no left child, the min points to the smallest leaf of its subtree. Correspond-
ingly the max points to the largest leaf in its subtree. The hash function needs to be a dynamic
perfect hashing or a cuckoo-hash.

7.2.1 Successor(x)

If x is in the lowest level (among the leaves) then we return it. If not, then make a binary search
for the longest prefix of x in the levels of the tree. If this element doesn’t have a right child, then

Comparison Count vs. Input Size for Alpha = 0.9

—8— std::sort
Worst predictor
10° 3 —e— Best Predictor

Comparison Count

T T T T
104 104 104 103
Input Size

Figure 4: The number of comparisons needed to sort a buffer.

it has a max pointer to a leaf. The right sibling of this leaf node will be the successor of x. This
can be done in O(loglogM).

Similarly, for the Predecessor(x), we find x in the lowest level, or we find a node with binary
search with a min pointer to a leaf. The left sibling of that leaf will be the predecessor of x.

7.2.2 Insert(x)

Let y be the longest prefix. We find the predecessor and successor of x, and then insert x
between them as a new leaf. Then, moving downwards from y, we traverse the levels and insert
the necessary prefixes into the hash tables. This takes O(log M) amortized time.

7.2.3 Application

By storing the buffers as x-fast tries, newly arriving elements can be easily inserted, and travers-
ing all the elements happens in linear time by traversing the list of leaves. In addition to this,
it is necessary to implement the merge operation required for collapse, that is, merging two
x-fast tries. This can be done by merging the two leaf lists, removing every second element, and
building a new tree in O(klogM) time. However, this is slower than merging two arrays.

In practice, it is sufficient to replace arrays with x-fast tries only at the lowest level; at higher
levels, we can keep the traditional array representation. This way, we lose nothing in terms of
merge time. Moreover, if the buffer at the highest level is stored as an x-fast trie, we can also
handle rank queries in O(loglog M) time using the successor operation. To achieve this, the tree
needs to be constructed from a sorted array (thus also providing a better implementation for the
merge operation).

It can be done by building the levels from bottom to top. We start by creating the list of
leaves from the array. Then, by going through this list, we will construct the level above it
while maintaining the min and max pointers, and hashing the level. If we have a level in the
tree, then we can construct the level above in the same way. This takes O(k +log M) time.

10

References

1.

10.

11.

12.

13.

14.

Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(ACM, Aug. 2016). http://dx.doi.org/10.1145/2939672.2939785.

DeWitt, D. J., Naughton, J. F. & Schneider, D. A. Parallel Sorting on a Shared-Nothing Ar-
chitecture Using Probabilistic Splitting in (IEEE Computer Society Press, Miami, Florida,
USA, 1991), 280-291. 1SBN: 0818622954

Cormode, G. & Hadjieleftheriou, M. Methods for finding frequent items in data streams.
The VLDB Journal 19, 3-20. 1SSN: 0949-877X. https://doi.org/10.1007/
s00778-009-0172-z (Feb. 2010).

Kompella, R. R., Singh, S. & Varghese, G. On Scalable Attack Detection in the Net-
work in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement
(Association for Computing Machinery, Taormina, Sicily, Italy, 2004), 187-200. ISBN:
1581138210. https://doi.org/10.1145/1028788.1028812.

Vass, B., Sarkadi, C. & Rétvari, G. Programmable Packet Scheduling With SP-PIFO:
Theory, Algorithms and Evaluation in IEEE INFOCOM 2022 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS) (2022), 1-6.

Chan, T. M., Munro, J. I. & Raman, V. Selection and Sorting in the “Restore” Model. ACM
Trans. Algorithms 14. 1SSN: 1549-6325. https://doi.org/10.1145/3168005
(Apr. 2018).

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L. & Tarjan, R. E. Time Bounds for
Selection. J. Comput. Syst. Sci. 7, 448-461. https://api.semanticscholar.
org/CorpusID:3162077 (1973).

Dor, D. & Zwick, U. Finding the on-th largest element. Combinatorica 16, 41-58. ISSN:
1439-6912. https://doi.org/10.1007/BF01300126 (Mar. 1996).

Dor, D. & Zwick, U. Median Selection Requires Comparisons in Proceedings of the 37th
Annual Symposium on Foundations of Computer Science (JEEE Computer Society, USA,
1996), 125.

Masson, C., Rim, J. E. & Lee, H. K. DDSketch: A fast and fully-mergeable quantile sketch
with relative-error guarantees. CoRR abs/1908.10693. arXiv: 1908 . 10693. http :
//arxiv.org/abs/1908.10693 (2019).

Hung, R. Y. S. & Ting, H. FE. An Omega(1/e Log 1/e) Space Lower Bound for Finding e-
Approximate Quantiles in a Data Stream in Proceedings of the 4th International Confer-
ence on Frontiers in Algorithmics (Springer-Verlag, Wuhan, China, 2010), 89—-100. ISBN:
3642145523.

Manku, G. S., Rajagopalan, S. & Lindsay, B. G. Approximate Medians and Other Quan-
tiles in One Pass and with Limited Memory. SIGMOD Rec. 27, 426-435. 1SSN: 0163-
5808. https://doi.org/10.1145/276305.276342 (June 1998).

Greenwald, M. & Khanna, S. Space-Efficient Online Computation of Quantile Summaries.
30, 58-66. I1SSN: 0163-5808. https://doi.org/10.1145/376284.375670
(May 2001).

Shrivastava, N., Buragohain, C., Agrawal, D. & Suri, S. Medians and Beyond: New Ag-
gregation Techniques for Sensor Networks. CoRR ¢s.DC/0408039. http://arxiv.
org/abs/cs.DC/0408039 (2004).

11

http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1145/1028788.1028812
https://doi.org/10.1145/3168005
https://api.semanticscholar.org/CorpusID:3162077
https://api.semanticscholar.org/CorpusID:3162077
https://doi.org/10.1007/BF01300126
https://arxiv.org/abs/1908.10693
http://arxiv.org/abs/1908.10693
http://arxiv.org/abs/1908.10693
https://doi.org/10.1145/276305.276342
https://doi.org/10.1145/376284.375670
http://arxiv.org/abs/cs.DC/0408039
http://arxiv.org/abs/cs.DC/0408039

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Karnin, Z., Lang, K. & Liberty, E. Optimal Quantile Approximation in Streams 2016.
arXiv: 1603.05346 [cs.DS].

Felber, D. & Ostrovsky, R. A randomized online quantile summary in 0(%log %) words
2015. arXiv: 1503.01156 [cs.DS].

Ivkin, N., Liberty, E., Lang, K., Karnin, Z. & Braverman, V. Streaming Quantiles Algo-
rithms with Small Space and Update Time 2019. arXiv: 1907.00236 [cs.DS].

Ivkin, N., Yu, Z., Braverman, V. & Jin, X. QPipe: Quantiles Sketch Fully in the Data
Plane in Proceedings of the 15th International Conference on Emerging Networking Ex-
periments And Technologies (Association for Computing Machinery, Orlando, Florida,
2019), 285-291. 1SBN: 9781450369985. https://doi.org/10.1145/3359989.
3365433.

Gan, E., Ding, J., Tai, K. S., Sharan, V. & Bailis, P. Moment-Based Quantile Sketches
for Efficient High Cardinality Aggregation Queries. Proc. VLDB Endow. 11, 1647-1660.
ISSN: 2150-8097. https://doi.org/10.14778/3236187.3236212 (July
2018).

Munro, J. & Paterson, M. Selection and sorting with limited storage. Theoretical Com-
puter Science 12, 315-323. 1SSN: 0304-3975. https: //www . sciencedirect.
com/science/article/pii/0304397580900614 (1980).

Li, K.-H. Reservoir-Sampling Algorithms of Time Complexity O(n(1 + Log(N/n))). ACM
Trans. Math. Softw. 20, 481-493. 1SSN: 0098-3500. https://doi.org/10.1145/
198429.198435 (Dec. 1994).

Cormode, G., Korn, F., Muthukrishnan, S. & Srivastava, D. Effective computation of bi-
ased quantiles over data streams in 21st International Conference on Data Engineering

(ICDE’05) (2005), 20-31.

Agarwal, P. K. et al. Mergeable summaries in Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Association for Comput-
ing Machinery, Scottsdale, Arizona, USA, 2012), 23-34. 1SBN: 9781450312486. https:
//doi.org/10.1145/2213556.2213562.

Bai, X. & Coester, C. Sorting with predictions in Proceedings of the 37th International
Conference on Neural Information Processing Systems (Curran Associates Inc., New Or-
leans, LA, USA, 2024).

Andersson, A. Improving Partial Rebuilding by Using Simple Balance Criteria in Pro-
ceedings of the Workshop on Algorithms and Data Structures (Springer-Verlag, Berlin,
Heidelberg, 1989), 393—402. 1SBN: 3540515429.

Willard, D. E. Log-logarithmic worst-case range queries are possible in space ®(N). Infor-

mation Processing Letters 17, 81-84.1SSN: 0020-0190. https://www.sciencedirect.

com/science/article/pii/0020019083900753 (1983).

12

https://arxiv.org/abs/1603.05346
https://arxiv.org/abs/1503.01156
https://arxiv.org/abs/1907.00236
https://doi.org/10.1145/3359989.3365433
https://doi.org/10.1145/3359989.3365433
https://doi.org/10.14778/3236187.3236212
https://www.sciencedirect.com/science/article/pii/0304397580900614
https://www.sciencedirect.com/science/article/pii/0304397580900614
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/2213556.2213562
https://doi.org/10.1145/2213556.2213562
https://www.sciencedirect.com/science/article/pii/0020019083900753
https://www.sciencedirect.com/science/article/pii/0020019083900753

	Introduction
	The quantile problem
	Theoretical results

	Major milestones
	MP-sketch
	New(X) operation
	Collapse(X1, X2, ..., Xc) operation
	Quantile(q) operation
	Algorithms

	GK-sketch
	Quantile(q)
	Insert(v)
	Delete(v)
	Compress()

	KLL-sketch
	Basic Idea
	Improvements
	Randomized Compression and Input Sampling
	Different Sized Compactors
	Using GK-sketch

	MP-sketch Improvements
	Sorting with prediction
	Scapegoat Tree
	Sorting
	Application

	x-fast trie
	Successor(x)
	Insert(x)
	Application

	References

