Quantile Sketch Algorithms

Levente Birszki

Supervisors: Gábor rétvári Balázs Vass

Eötvös Loránd University

2025 January 09

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties MRL-sketch

Motivation

- Financial Analysis: Quickly estimating value at risk (VaR) and other financial metrics from large volumes of transaction data.
- Network Monitoring: Analyzing latency, bandwidth usage, and other network metrics in real-time.
- Database Systems: Enhancing query performance by maintaining approximate summaries of large tables.

Quantile Sketch Algorithms Levente Birszki Motivation

Basic concepts Error guaranties Former results MRL-sketch framework GK-sketch KLL-sketc Our contribution Sorting with prediction Measurements

Basic concepts

Definition (sketch)

A *sketch* S(X) of some data set X with respect to some function f is a compression of X that allows us to compute, or approximately compute f(X) given access only to S(X).

Definition (rank)

Given an x element from the input stream. r(x), the rank of x is the number of elements smaller or equal than x in the sorted input.

Definition (quantile)

The *q*-quantile for $q \in [0, 1]$ is the element x_q , whose rank is $\lceil qn \rceil$.

Quantile Sketch Algorithms

Levente Birszki

Motivation Basic concepts Error guaranties Former results MRI -sketch

Why sketches?

- Scalability: Traditional methods for computing quantiles can be impractical for large datasets due to high computational and storage costs.
- Stream Processing: In many real-time applications, data arrives in streams, and it's crucial to compute quantiles without storing the entire dataset.

Definition (rank error)

An element \tilde{x}_q is an ε -approximate q-quantile if $|r(x_q) - r(\tilde{x}_q)| \le \varepsilon n$. This also known as rank error.

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRI -sketch Measurements

Former results

Definition (single quantile approximation problem) In the single quantile approximation problem, given an x_1, \ldots, x_n input stream, q, ε and δ . Construct a streaming algorithm, which computes an ε -approximate q-quantile with probability at least $1 - \delta$.

	Publication	Algorithm	Space Complexity	Mergeability	quantile type	Our contribution
-	2001	GK-sketch	$O\left(\frac{1}{\varepsilon}\log(\varepsilon n)\right)$	no	all	Sorting with
-	2004	q-digest	$O(\frac{1}{\varepsilon}\log u)$	yes	all	prediction
	2016	KLL	$O(\frac{1}{\varepsilon}\log^2\log\frac{1}{\delta})$	yes	singe	Measurements Using x-fast trie
	2016	KLL	$O(\frac{1}{\varepsilon}\log^2\log\frac{1}{\delta\varepsilon}))$	yes	all	
	2017	FO	$O(\frac{1}{\varepsilon}\log \frac{1}{\varepsilon})$	no	all	
	2019	SweepKLL	$O(\frac{1}{\varepsilon}\log\log\frac{1}{\delta}))$	no	single	
_	2019	SweepKLL	$O(\frac{1}{\varepsilon}\log\log\frac{1}{\delta\varepsilon}))$	no	all	

Quantile Sketch

Algorithms Levente Birszki

Motivation

Basic concepts

Error guaranties Former results

MRI -sketch

MRL-sketch framework

b buffers, each can store *k* elements. each buffer *X* has a w(X) weight. Three operations:

- New(X): Fills an empty buffer from input, w(X) := 1.
- Collapse(X_1, X_2, \ldots, X_c):

OUTP	-	3 52 8	3 114	143	weig	ght 9.					
Sorted	l Sequ	ence:	. ((offset =	5)						
12	12	23	23	23	33	33	33	44			
44	44	44	52	52	64	64	64	64			
72	72	83	83	83	94	94	94	94			
102	102	114	114	114	114	124	124	124			
124	132	132	143	143	143	153	153	153			
Input	:										
	1	2 52 72	2 102	132	weig	ght 2,					
	2	3 33 83	3 1 4 3	153	weight 3,						
	4	4 64 94	1114	124	weig	cht 4.					

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Former results MRI -sketch framework

• Quantile(q): After collapse, returns $X[q \cdot k]$

Merging policies

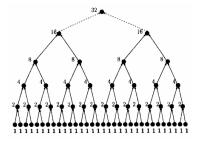


Figure: MP-sketch for b = 6 buffers.

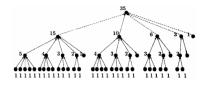


Figure: MRL-sketch for b = 5 buffers.

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties MRL-sketch framework

GK-sketch

GK-sketch uses only one array and stores tuples:

v_i: one of the elements seen so far.

•
$$g_i = r_{\min}(v_i) - r_{\min}(v_{i-1}).$$

$$\Delta_i = r_{\max}(v_i) - r_{\min}(v_i).$$

we can use these values to obtain lower and upper bounds for a rank of an element.

Sometimes we merge adjacent elements.

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRI -sketch GK-sketch

KLL-sketch

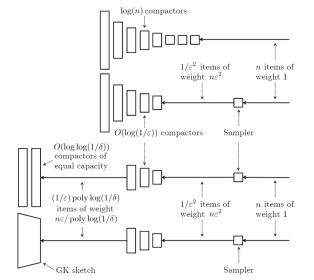


Figure: KLL step-by-step

Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRL-sketch KLL-sketc

Quantile Sketch

Runtime of MP-sketc

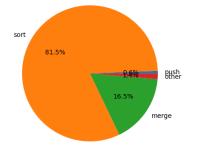


Figure: Operation proportions to the runtime of MP-sketch. $n = 10^5, \varepsilon = 0.001, b = 6, k = 3125$

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties MRL-sketch Our contribution

Jsing x-fast tries

Our contribution

- Improve performance using its own predictions. If we have a quantile sketching algorithm, we can use it, to approximate the CDF.
- The slowest part is to sort the buffers on the first level, so try to improve this.
- In every insertion, ask the top level bucket what is the rank of that element. Then try to insert it into the buffers corresponding position.
- To this last part, we used a clever sorting algorithm (Bai and Coester, 2024) that utilizes predictors.

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRI -sketch Our contribution

Measurements Using x-fast tries

Sorting with prediction

Algorithm 1 Sorting with prediction

```
Input: A = a_1, ..., a_n, predictor \hat{p}
BucketSort(A, \hat{p})
T \leftarrow an empty scapegoat tree with finger.
N \leftarrow n
for i = 1, ..., n do
Insert a_i into T.
end for
return nodes in T in sorted order (via inorder traversal)
```

Theorem

Algorithm 1 sorts an array within $O(\sum_{i=1}^{n} \log(\eta_i^{\Delta} + 2))$ running time and comparisons, where $\eta_i^{\Delta} := |\hat{p}(i) - p(i)|$.

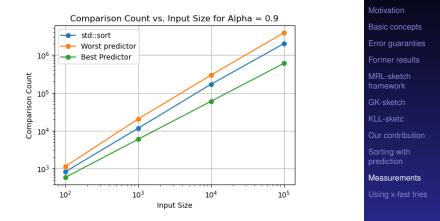
Quantile Sketch Algorithms

Levente Birszki

Motivation Basic concepts Error guaranties Former results MRL-sketch framework GK-sketch KLL-sketc Our contribution Sorting with prediction

Using x-fast tries

Measurements



Quantile Sketch

Algorithms Levente Birszki

Figure: The number of comparisons needed to sort a buffer.

Using x-fast tries

- If we have data that can have an integer-like representation, we can use x-fast tries instead of predictors.
- The buffers on the lowest and highest levels should be implemented with an x-fast trie instead of an array.
- That way, we can fill a buffer in O(k log log M) time instead of O(k). From these, we can construct an array in O(k) time, and merge them as usual.
- On the top level, we can construct an x-fast trie from a sorted array in O(k) time, and use it to serve rank-queries in O(log log M) time.

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRI -sketch Measurements Using x-fast tries

Thank you for your attention!

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties MRL-sketch

Sorting with prediction

Measurements

Using x-fast tries