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1 Introduction

The Traveling Salesman Problem (TSP) is a cornerstone in the �eld of combinatorial optimization.

The objective of this problem is to determine the shortest Hamiltonian cycle in a complete graph with

n nodes, where the edges have metric weights. As one of the most well-known NP-hard problems,

TSP has been studied extensively, not only due to its theoretical signi�cance but also because of its

practical applications in logistics, transportation, and network design.

Numerous versions of the Traveling Salesman Problem have been proposed. This essay focuses

on the prize-collecting variant, where, alongside the metric edge weights, each vertex of the graph is

assigned a positive weight representing the prize or penalty the salesman forfeits by skipping a city.

In this version, the goal is not to visit all vertices, so we are not seeking a Hamiltonian cycle. Instead,

we aim to �nd a cycle of arbitrary size that starts at a given root vertex, minimizing the sum of the

tour length and the penalties paid for missed nodes.

In this semester I continued working on a heuristic algorithm for �nding a solution to the problem.

Moreover, I implemented the linear programming relaxation of the PCTSP, described below, in order

to get a lower bound for the optimal value, and be able to evaluate the results of the heuristic

algorithm.

2 The prize-collecting traveling salesman problem

De�nition 1. Be given a complete graph G = (V, E), a root r ∈ V , ce ≥ 0 ∀e ∈ E metric edge

lengths, and vertex weights πv ≥ 0 ∀v ∈ V \{r}.
The prize-collecting traveling salesman problem is to �nd a cycle C = (VC , EC) in G, so that r ∈ VC,

and
∑

e∈EC
+
∑

v∈V \VC
is minimal.

2.1 The LP relaxation

The linear programming relaxation of the problem can be formulated as follows:

min
∑
e∈E

cexe +
∑
v∈V

πv(1− yv)
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x(δ(v)) = 2yv ∀v ∈ V \{r}
x(δ(r)) ≤ 2

x(δ(S)) ≥ 2yv ∀S ⊆ V \{r}, v ∈ S

yr = 1

xe ≥ 0 ∀e ∈ E

yv ≥ 0 ∀v ∈ V

Here for all e ∈ E, ce is the length of the edge e, and for all v ∈ V , πv is the amount of penalty that

has to be paid for leaving out the vertex v. r stands for the root of the tour, which must be included

in the solution.

Each node and edge has a corresponding variable in the relaxation (xe for edge e, and yv for node

v), which represents the extent to which the node or edge is visited by the fractional solution.

Given a subset S ⊆ V , let δ(S) := {e ∈ E : |e ∩ S| = 1}, i.e. the set of edges exiting the node

set S, and let δ(v) := δ({v}). Besides, let x(δ(S)) :=
∑

e∈δ(S) xe.

We require the extent to which a vertex is visited to be equal to half of the sum of the visitation

levels of the edges incident to that vertex. This follows naturally from the fact that in an integer

solution, if a vertex is included in the tour, then there have to be exactly two edges incident to it

that are included in the tour.

3 Implementation of the LP

I implemented the linear programming relaxation of the Prize-Collecting Traveling Salesman

Problem, described above, in Python programming language, using the PuLP library and the built-

in PULP-CBC-CMD solver.

However, the number of variables in the LP is quadratic, while the number of constraints is

exponential in the size of the node set. Namely, the number of variables equals to |V | + |E| =

|V |+ |V |·(|V |−1)
2

, which makes the program grow large quickly when increasing the size of the graph.

Besides, the linear program includes one or more constraints for every subset S ⊆ V \{r}. More

precisely, it contains a constraint for each (S, v) subset-node pairs, where v ∈ S. This makes the

program too large to solve even for a small instance.

In my implementation, I �rst create the model leaving out all the set constraints of the form

x(δ(S)) ≥ 2yv, where |S| ≥ 2. I �xed the number of nodes to be 100, which is large enough to provide

evaluable results but still manageable to handle. After solving this model, I add the constraints for

the sets where the condition is violated in the solution. In the case when the solution consists of a

disjoint graph, I consider the connected components and add the corresponding constraints to the

model, as there are no outgoing edges, thus the conditions for these sets must be violated. In case

the solution is a connected graph, I look for the minimal cuts between the root vertex r and each of

the other vertices v, and check whether the condition holds for the set containing v in the minimal

cut. Then, I extend the LP model with these additional constraints if needed. I use the solver again
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to solve the model, then I repeat this step, while there are no more constraints to add, if the program

terminates in a reasonable amount of time. In practice, for some instances this is still unrealizable,

but we still gain a lower bound for the optimal value.

4 The heuristic algorithm

Solving the Traveling Salesman Problem exactly, and so solving the Prize-Collecting TSP is com-

putationally infeasible for large instances due to the factorial growth of possible solutions. However,a

variety of approximation algorithms have been developed to tackle it.

Heuristic algorithms provide an essential approach in handling the PCTSP by o�ering near-

optimal solutions in a reasonable amount of time. These methods, which do not guarantee an exact

solution, focus on �nding good-enough solutions quickly by making decisions based on a simpli�ed

search process.

In my implementation, I operate with the following algorithm.

Given an n-vertex complete graph with metric edge lengths, a positive weight assigned to each

vertex, and a �xed root node, we begin with the root as a one-point tour. Vertices are then added

one by one to the existing tour. In each iteration, the goal is to �nd the best possible insertion by

considering all the remaining vertices. Speci�cally, we examine each outlying vertex and attempt

to insert it between every pair of adjacent vertices in the current tour, selecting the insertion that

results in the smallest objective value, but forcing the algorithm to increase the size of the tour by

one node, even if it causes a momentarily worse solution. Then, we try to execute twice in a row the

following edge-swapping, then the node-dropping step, in case they improve the current solution.

Edge-swapping step:

For each pair of edges (v1v2, u1u2) in the given tour (where the edge v1v2 is passed through sooner

than u1u2), we check whether the solution can be improved as follows. The edges v1v2 and u1u2 are

deleted from the solution and replaced by the edges v1u1 and v2u2. The path v2 − u1 is replaced by

the path u1 − v2 (walked through from the opposite direction). We repeat this until the objective

value cannot be decreased by this method.

Node-dropping step:

For a given tour, we examine whether deleting one vertex can decrease the objective value, and if so,

we delete the "worst" node from the solution, repeating this while it can make an improvement.

After these steps, we proceed in the current iteration with the tour gained before deleting any

nodes, providing the termination of the algorithm in n−1 iterations, where n is the number of nodes,

speci�cally, n = 100 in our case. We keep track of the best found tour, which is returned at the end

of the algorithm.
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5 Evaluation of the heuristic algorithm

5.1 Setting parameters

I implemented the algorithm on pseudorandom graphs generated from seeds using the NumPy

Python package. Speci�cally, the number of nodes is �xed at n = 100, and each node is assigned a

pseudorandom prize, which is an integer between 1 and 100. The edge lengths are required to satisfy

the metric properties, so I use the ceiling of the Euclidean distances between vertices, which are

placed within a bounded area. The coordinates of the vertices are generated uniformly at random

within the range [0, �eld size], where the �eld size was set to 700.

5.2 Some experimental results

In the following data table (5.2) we can see a comparison of the result of the heuristic algorithm

and the lower bound for the optimal solution found by solving the LP. It contains values for some

instances of the problem with parameters described above.

The images 5.2 and 5.2 provide an example of the tours found by the two algorithms.

5.3 Codes

The codes are available at the following links:

Heuristic algorithm: https://colab.research.google.com/drive/1yovYIn38DYfjaRy6PLfgnwocDGbDgw5?usp =

sharing

LPrelaxation : https : //colab.research.google.com/drive/1nivPf0NYNi498QvWv9Bhy2GApyaP81c?usp =

sharing
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Figure 1: Table of values for �eld size=700
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Figure 2: The tour found by the linear program for seed=8, �eld size=700

Figure 3: The tour found by the heuristic algorithm for seed=8, �eld size=700
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