The prize-collecting traveling salesman and related problems

Written by: Czirjak Lilla
Supervisor: Dr. Kiraly Tamaés
DECEMBER, 2024

1 Introduction

The Traveling Salesman Problem (T'SP) is a cornerstone in the field of combinatorial optimization.
The objective of this problem is to determine the shortest Hamiltonian cycle in a complete graph with
n nodes, where the edges have metric weights. As one of the most well-known NP-hard problems,
TSP has been studied extensively, not only due to its theoretical significance but also because of its
practical applications in logistics, transportation, and network design.

Numerous versions of the Traveling Salesman Problem have been proposed. This essay focuses
on the prize-collecting variant, where, alongside the metric edge weights, each vertex of the graph is
assigned a positive weight representing the prize or penalty the salesman forfeits by skipping a city.
In this version, the goal is not to visit all vertices, so we are not seeking a Hamiltonian cycle. Instead,
we aim to find a cycle of arbitrary size that starts at a given root vertex, minimizing the sum of the
tour length and the penalties paid for missed nodes.

In this semester I continued working on a heuristic algorithm for finding a solution to the problem.
Moreover, I implemented the linear programming relaxation of the PCTSP, described below, in order
to get a lower bound for the optimal value, and be able to evaluate the results of the heuristic

algorithm.

2 The prize-collecting traveling salesman problem

Definition 1. Be given a complete graph G = (V, E), a root r € V, ¢, > 0 Ve € E metric edge
lengths, and vertex weights w, > 0 Vv € V\{r}.
The prize-collecting traveling salesman problem is to find a cycle C = (Vio, E¢) in G, so that r € Vg,

and Y .cp. D pev\ve i minimal.

2.1 The LP relaxation

The linear programming relaxation of the problem can be formulated as follows:

minz CeTe + Z (1 — yy)

eckE veV

z(0(v)) = 2y, YveV\{r}

z(6(r)) < 2

z(6(S)) > 2y, YSCV\{r},ves
yr = 1
z. > 0 VeeFE
Yo => 0 YoeV

Here for all e € E, c. is the length of the edge e, and for all v € V', 7, is the amount of penalty that
has to be paid for leaving out the vertex v. r stands for the root of the tour, which must be included
in the solution.

Each node and edge has a corresponding variable in the relaxation (z. for edge e, and y, for node
v), which represents the extent to which the node or edge is visited by the fractional solution.

Given a subset S C V, let 6(S) :={e € F: |en S| = 1}, i.e. the set of edges exiting the node
set S, and let 0(v) := d({v}). Besides, let 2(6(S)) = > cs5s) Te-

We require the extent to which a vertex is visited to be equal to half of the sum of the visitation
levels of the edges incident to that vertex. This follows naturally from the fact that in an integer
solution, if a vertex is included in the tour, then there have to be exactly two edges incident to it

that are included in the tour.

3 Implementation of the LP

I implemented the linear programming relaxation of the Prize-Collecting Traveling Salesman
Problem, described above, in Python programming language, using the PulLP library and the built-
in PULP-CBC-CMD solver.

However, the number of variables in the LP is quadratic, while the number of constraints is
exponential in the size of the node set. Namely, the number of variables equals to |V| + |E| =
V| + W, which makes the program grow large quickly when increasing the size of the graph.
Besides, the linear program includes one or more constraints for every subset S C V\{r}. More
precisely, it contains a constraint for each (S,v) subset-node pairs, where v € S. This makes the
program too large to solve even for a small instance.

In my implementation, I first create the model leaving out all the set constraints of the form
z(6(S)) > 2y,, where |S| > 2. I fixed the number of nodes to be 100, which is large enough to provide
evaluable results but still manageable to handle. After solving this model, T add the constraints for
the sets where the condition is violated in the solution. In the case when the solution consists of a
disjoint graph, I consider the connected components and add the corresponding constraints to the
model, as there are no outgoing edges, thus the conditions for these sets must be violated. In case
the solution is a connected graph, I look for the minimal cuts between the root vertex r and each of
the other vertices v, and check whether the condition holds for the set containing v in the minimal

cut. Then, I extend the LP model with these additional constraints if needed. I use the solver again

to solve the model, then I repeat this step, while there are no more constraints to add, if the program
terminates in a reasonable amount of time. In practice, for some instances this is still unrealizable,

but we still gain a lower bound for the optimal value.

4 The heuristic algorithm

Solving the Traveling Salesman Problem exactly, and so solving the Prize-Collecting TSP is com-
putationally infeasible for large instances due to the factorial growth of possible solutions. However,a
variety of approximation algorithms have been developed to tackle it.

Heuristic algorithms provide an essential approach in handling the PCTSP by offering near-
optimal solutions in a reasonable amount of time. These methods, which do not guarantee an exact
solution, focus on finding good-enough solutions quickly by making decisions based on a simplified
search process.

In my implementation, I operate with the following algorithm.

Given an n-vertex complete graph with metric edge lengths, a positive weight assigned to each
vertex, and a fixed root node, we begin with the root as a one-point tour. Vertices are then added
one by one to the existing tour. In each iteration, the goal is to find the best possible insertion by
considering all the remaining vertices. Specifically, we examine each outlying vertex and attempt
to insert it between every pair of adjacent vertices in the current tour, selecting the insertion that
results in the smallest objective value, but forcing the algorithm to increase the size of the tour by
one node, even if it causes a momentarily worse solution. Then, we try to execute twice in a row the
following edge-swapping, then the node-dropping step, in case they improve the current solution.

Edge-swapping step:

For each pair of edges (v1vy, ujus) in the given tour (where the edge vivy is passed through sooner
than ujusy), we check whether the solution can be improved as follows. The edges v,vy and ujusy are
deleted from the solution and replaced by the edges viu; and vous. The path ve — g is replaced by
the path u; — vy (walked through from the opposite direction). We repeat this until the objective
value cannot be decreased by this method.

Node-dropping step:

For a given tour, we examine whether deleting one vertex can decrease the objective value, and if so,
we delete the "worst" node from the solution, repeating this while it can make an improvement.

After these steps, we proceed in the current iteration with the tour gained before deleting any
nodes, providing the termination of the algorithm in n — 1 iterations, where n is the number of nodes,
specifically, n = 100 in our case. We keep track of the best found tour, which is returned at the end

of the algorithm.

5 Evaluation of the heuristic algorithm

5.1 Setting parameters

I implemented the algorithm on pseudorandom graphs generated from seeds using the NumPy
Python package. Specifically, the number of nodes is fixed at n = 100, and each node is assigned a
pseudorandom prize, which is an integer between 1 and 100. The edge lengths are required to satisfy
the metric properties, so I use the ceiling of the Euclidean distances between vertices, which are
placed within a bounded area. The coordinates of the vertices are generated uniformly at random

within the range [0, field size|, where the field size was set to 700.

5.2 Some experimental results

In the following data table (5.2) we can see a comparison of the result of the heuristic algorithm
and the lower bound for the optimal solution found by solving the LP. It contains values for some
instances of the problem with parameters described above.

The images 5.2 and 5.2 provide an example of the tours found by the two algorithms.

5.3 Codes

The codes are available at the following links:
Heuristic algorithm: https://colab.research.google.com/drive/1yovYIn38DYfjaRy6PLfgnwocDGbDg wh7usy
LP relaxation: https://colab.research.google.com/drive/1niv_ PfONYNi498QvWv9Bhy2GApyaP81c?usp=sha

seed value of LP value of heuristic difference invalues solution size of LP tour size of heuristic

0D 00 =) N fa L3 R e O

el e e e e = =]
BENEERBERNEEEENEaRERES

4564
4336
46596
4295
42995
4142
4368
4568
4454
4319
4193,75
4332,986
4553,348
4267
47405
4611,5
4091
4222
4277875
4435
4334
4315
3957,652
4482
4332
4785
4386
45415
4662
4095

4683
4664
4825
4595
4580
4860
4711
4529
4858
4493
4361
4578
o014
4613
2016
4879
4264
4330
4381
4760
4851
4451
4154
4802
4887
2159
4562
4399
2089
4397

Figure 1: Table of values for field size=700

119

328
229
300
2805
o918

343

361

164

174
162,25
245,014
460,6518
346
27548
2675
173

158
303,125
305

317

136
196,3425
120

939

304

606
3575
427

302

48
52
42
50
64
a0
61
58
45
64
74
70
a4
41
59
69
a0
40
85
59
59
60
77
a1
59

62
54
62
57

71

26
63

1
40
70
a1

3

1
52
43
21
28
99
47
45
66
15
21
62
29
56
16
29
19

1
70
73
28
77
a7

difference in tour sizes
=20
11
-41

-] 4
d -' .;." »
>
A
.:) = ql".-??'.
b
. D0
1€ -
D0 S
L)
)
1 .
A5 5
A =
31 5515
9, -
! M
)
: . : 7
0

Figure 2: The tour found by the linear program for seed=8, field size=700

Figure 3: The tour found by the heuristic algorithm for seed=8, field size=700

References

[1] Blauth, Klein, Négele: A Better-Than-1.6-Approximation for Prize-Collecting TSP (2023)
[2] Goemans, Williamson: A general approximation technique for constrained forest problems (1995)

[3] Ausiello, Bonifaci, Leonardi, Marchetti-Spaccamela: Prize-Collecting Traveling Salesman and Re-
lated Problems

[4] Ahamdi, Gholami, Hajiaghayi, Jabbarzade, Mahdavi: 2-Approximation for Prize-Collecting
Steiner Forest

