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1 Introduction

In the previous semester I empirically analysed
confidence intervals for mean estimation problems,
where I compared the performance of the sign-
perturbed sums (SPS) algorithm to asymptotic
methods. I also examined the simplest “classifica-
tion problem” in which case there are no explana-
tory variables.

In the second part of the project I considered
binary classification with one explanatory variable,
using the generalization of the SPS method [1, 2].
The aim is to estimate the regression function (f∗)
and construct confidence regions around the esti-
mate. In this report first, I present the SPS method
for classification, then I make simulations with
generated mixed Laplace distributed random vari-
ables and finally apply the method on real data
associated with bank churn.

In binary classification an i.i.d. sample is given
from the unknown distribution of a random vec-
tor variable (X,Y ) ∈ X × Y, where X ⊆ Rd is
the input space and Y = {1,−1} is the binary
output space. The (measurable) g : X → Y func-
tions are called classifiers. Generally the objec-
tive is to find a Bayes optimal classifier, which
minimizes the Bayes risk R(g)

.
= E[L(Y, g(X))],

where L is a nonnegative measurable loss func-
tion. If L(Y, g(X)) = I(Y ̸= g(X)), where I is the
indicator function, then the Bayes optimal clas-
sifier will be the sign of the regression function,
f∗(x)

.
= E[Y |X = x]. The role of the regression

function in binary classification is central, because
it determines the conditional probabilities of the
classes given the input as

f∗(x) = E[Y |X = x] = 2 · P (Y = 1|X = x)− 1.

If the corresponding densities exist:

P (Y = 1|X = x) =

=
P (Y = 1) · fX|Y=1(x)

P (Y = 1) · fX|Y=1(x) + P (Y = −1) · fX|Y=−1(x)
.

Although in practice we do not know fX|Y=1 and
fX|Y=−1, we can choose distribution families and
approximate them. Thus I will construct confi-
dence sets for the parameters and the regression
function in a given model class.

2 Confidence sets

I empirically analysed the SPS method for clas-
sification problems, which is a resampling proce-
dure. It can construct exact confidence sets with
a user-chosen confidence level for the regression
function under the following mild assumptions:

(a1) X ⊆ Rd and the {(Xj , Yj)}nj=1 sample is i.i.d.;

(a2) for the regression function a parameterised fam-
ily F is given, which contains f∗, i.e.,

f∗ ∈ F .
= {fθ : X → [−1, 1] | θ ∈ Θ};

(a3) the parameterisation is injective, such that for
all θ1 ̸= θ2 ∈ Θ:

∥fθ1 − fθ2∥2P
.
=

∫
X
(fθ1(x)− fθ2(x))

2dPX(x) ̸= 0,

where PX is the distribution of the inputs.

Without the second one, it would not be possible
to construct the set in practice and the third one
is a technical assumption.

2.1 Resampling framework

The main idea is to generate, for a given θ pa-
rameter, m−1 alternative outputs for the original
inputs from the conditional distribution given θ:

Pθ(Y = 1|X = x) =
1− fθ(x)

2
.

Let D0 = {(Xj , Yj)}nj=1denote the original sample,
then we construct the i-th alternative sample by

Di(θ)
.
= {(Xj , Yi,j(θ))}nj=1,

where Yi,j(θ) is generated from Pθ(Y = 1|Xj).
Here we have two remarks:

1



1. If θ = θ∗, then D0 and Di(θ
∗) comes from the

same distribution.

2. If θ ̸= θ∗, then the distribution of Di(θ) differs
from that D0.

The significance of the difference can be detected
with a statistical test, considering the following hy-
potheses:

H0 : f∗ = fθ

H1 : f∗ ̸= fθ
(1)

The original and alternative samples are compared
using a ranking function.

2.2 Compute ranks

In the following I determine the rank for a con-
crete distribution family and a given θ as follows:

1. Determine fθ̂, where θ̂ is the maximum-
likelihood estimate of the parameter.

2. Calculate

Z0(θ) =
1

n

n∑
j=1

(
fθ̂(Xj)− fθ(Xj)

)2
,

where Xj is the j-th input element.

3. Generate m − 1 alternative outputs, and
determine fθ̂i , where θ̂i is the ML-
estimation of θ from the i-th new sample
for i = 1, . . . ,m− 1.

4. Calculate

Zi(θ) =
1

n

n∑
j=1

(
fθ̂i(Xj)− fθ(Xj)

)2

,

for i = 1, . . . ,m− 1.

5. Order {Zi}m−1
i=0 and compute the rank by:

R(θ)
.
= 1 +

m−1∑
i=1

I (Zi(θ) ≺π Z0(θ)) ,

where ≺π is a strict ordering, cf. [1]

6. Return R(θ).

Table 1: Pseudocode: determine rank

Definition 1 Let R be as in the pseudocode and
p ≤ q ∈ [m] user-chosen integers, then the SPS
confidence set is defined by

Θϱ
.
= {θ ∈ Θ : p ≤ R(D0, {Dk(θ)}k ̸=0) ≤ q},

where ϱ
.
= (m, p, q).

Theorem 1 Assuming (a1), (a2) and (a3), for
ranking function R and ϱ

.
= (m, p, q) parameters

for which 1 ≤ p ≤ q ≤ m,

P(θ∗ ∈ Θψ
ϱ ) =

q − p+ 1

m
.

This theorem guarantees non-asymptotically the
exact inclusion probability of f∗ under mild statis-
tical assumptions. It is independent from the dis-
tribution of the inputs, hence it is semi-parametric.

The test for problem (1) could be: accept the
nullhypothesis if the tested regression function is
in the confidence set. Then theorem 1 determines
exactly the significance level of the test, which we
can set arbitrary.

3 Simulations

I made some simulations on generated data,
where P (Y = 1) = P (Y = −1) = 0.5 and the con-
ditional distribution of X given Y are Laplacian
with location parameter µ = Y . The scale param-
eter λ equaled to 1 in both of the distributions. In
this case the (real) conditional probability is:

P (Y = 1|X = x) =
e−|x−1|

e−|x−1| + e−|x+1| .

In all my analyses I fixed µ1 and µ2 as known,
and I tested parameters p = P (Y = 1) and λ to
produce figures in 2 dimension.

Figure 1: The two Laplace PDF and the real regres-
sion function

I implemented the algorithm and first gener-
ated a sample with 500 elements. Then I set m

to be 20 and tested 51 − 51 parameters for p

and λ uniformly from the intervals [0.4, 0.575] and
[0.78, 1.25] in all combinations. The results in the
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parameter and model space are shown in Figure 2.
Color black denotes the 5 % confidence level and
as the orange becomes lighter, the confidence level
increases to 100 %. Color aqua denotes the real pa-
rameters and regression function used to generate
the sample.

Figure 2: Confidence sets for n = 500 in the parameter
and the model space

In the second experiment with mixed Laplace
sample I made some changes. I set m to be 10 and
the sample size from 20 to 300. I ran the code in
two different ways as a comparison: first with the
known µ1 and µ2 and for the second time always
with the ML estimation of the location parame-
ters from the actual sample. I repeated the previ-
ous steps five times and illustrated the mean of the
ranks and the related regression functions (Figure
3). The generated samples are pairwise the same.
The first two rows belong to the tests with known
µ1 and µ2, and one can see the results of the es-
timated location parameters on the second half of
the graphics.

Figure 3: Confidence sets for different sample sizes and multiple running to compare the results for
known and estimated location parameters. Color aqua candidates the real parameters and regression
function that we used to generate the sample.
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We can conclude that a smaller sample size in-
duces more uncertainty (it is not surprising). But
we can say that there is just a bit difference if we
use the estimated parameters instead of the real
ones. This is good because in general we usually do
not even know the distribution families, let alone
their true parameters.

4 Application to real data

In this section I apply the presented method
on real data. The used dataset [3] is publicly avail-
able on Kaggle. It contains information about cus-
tomers of a bank, and the aim is to predict the
probability that someone will leave this institute.
In the dataset output variables 1 and 0 denote the
fact of churn and staying. Many features are avail-
able about the clients, from which I selected age
as the explanatory variable. Because there were so
many observations in the database, I reduced the
size to 4000 to keep our methods in a tractable
regime. I randomly selected the clients, keeping the
original exited - not exited ratio. The histogram of
the observations is shown in Figure 4.

Figure 4: Histogram of the observations

We can see that the distribution of the ages,
where people leaved the bank is similar to a nor-
mal, but the age distribution of the other group of
people is clearly skewed, and has a higher kurtosis
than gaussian distribution. In my first experiment
I chose two model class for constructing confidence
sets: firt I approximated both of the distributions
with normal, then with lognormal distributions,
which is skewed. Similarly to the Laplacian case, I
fixed µ1, µ2 and σ2

1 with ML-estimates, which are
the expected values and variance of exited at nor-
mal and the same parameters of the logarithm of

the observations at lognormal distribution. Thus
I tested the p = P (Y = 1) and σ2

2 parameters.
My additional hyperparameters: n = 4000 (all),
m = 10, number of tested parameters = 21 − 21.
The results in the parameter and model space can
be seen in Figure 5. Color aqua denotes the ML
estimate of the tested parameters and regression
functions.

Figure 5: Predicting bank churn using gaussian
(above) and lognormal (below) distribution

One can conclude that although predicting ex-
ited = 1 seems to be a harder exercise, the model
class using the lognormal distribution is much
more confident than the other. In Figure 6 I chose
some age values and made plots of the confidence
intervals of the probability that a client at these
ages will leave the bank. As the illustrations show,
the length of the intervals given by the lognormal
class were always shorter, but the two case are not
in conflict, the longer interval usually contains the
shorter one.

Figure 6: Confidence intervals and their length for
the two model classes
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My last study used the model class with log-
normal distribution. In this case I took smaller
samples of 200 elements, repeated 5 times and il-
lustrated the mean of the ranks. The 5 samples
were element-wise different. The number of tested
parameters were 30 − 30 and m was set to 10. I
made two versions to compare the confidence sets
in the model space:

1. test p and σ2
2

2. test p and µ2

The plots are shown in Figure 7.

Figure 7: Test µ2 vs. σ2
2: confidence sets with

n = 200 from multiple sampling

We can say that there is a difference between
the results of the two tests. Both cases indicated
a bigger challenge in predicting the outcome at
higher ages, but changing the location parameter
for people staying at this bank also led to longer
confidence intervals for the probability of churn
at lower ages. As one can see on figure 4, there
are observations from both outputs among the
youngest, not only close to the maximum age in
this database. Hence, there may be higher uncer-
tainty at the two edges of the interval of possible
input values.

5 Conclusions

In this report I presented a non-asymptotic,
distribution-free, and exact confidence set con-
structing algorithm for binary classification prob-
lems. I also demonstrated how the method works
via synthetic and real data.

This method can be very useful, especially
when we have a small sample, because it requires
mild statistical assumptions. There is also an open
question. Testing more parameters makes it diffi-
cult to represent the confidence sets in a higher di-
mensional parameter space. Of course we can give
a yes/no answer if the set contains the tested pa-
rameters in a user-chosen level, but it is hard to
visualize it in higher dimension, and also the com-
putational time increases.

In the next semester the aim is to study this
method in multivariate cases and find an effective
way to represent the results. One of the main ob-
jectives is to extract confidence intervals from the
sets in the case of more parameters and higher di-
mension. Taking more variables into the model can
give better predictions in classification problems,
e.g. in this bank churn dataset.
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