Project Work I. - 2023/24/2 Parameter Efficient Fine-tuning of Large Language Models

< □ ▶ < @ ▶ < \ > ▶ < \ = ▶ = \ =

Author: Sándor Zsombor Supervisor: Csanády Bálint

What is parameter efficient fine-tuning?

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is PEFT?

Problem:

- Large language models have several billion parameters
- Full fine-tuning takes a lot of time and resources
- Prompt engineering is largely a manual process

PEFT:

- Purpose: achieve a performance similar to full fine-tuning, but only tuning a fraction of the original parameters
- General method: we freeze the parameters, add extra layers, which modify the output, and only tune the new layers

<u>• • • </u>• # # • • = • • = •

Used PEFT methods

Prompt tuning

- Takes inspiration from prompt engineering
- Prompt engineering: we try to "fix" the prompt to force the model in the direction of the wanted output

- Prompt tuning: do this, but after embedding
- We add virtual tokens, embed these, then concatenate them

Low-rank adaptation

Large number of parameters in LLM layers, BUT the intrinsic rank is low

- Idea: fine-tune in a lower rank space
- Let $M \in \mathbb{R}^{n \times k}$ be a parameter matrix
- Add $\frac{\alpha}{r}AB$, where $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times k}$
- α and *r* are hyperparameters
- *d* dropout hyperparameter

Results

</

The experiment

IMDB dataset:

- Contains 50 000 movie reviews
- All labelled with positive or negative depending on the sentiment
- 50%-50% test-train split, balanced positive-negative ratio Model:
 - LLaMA2 family by Meta
 - Experiments mainly with 7B model
 - Final results also with 13B and 70B models

Accuracy without training (Stanford Alpaca type prompts):

Model size	7B	13B	70B
Accuracy	51.78%	82.564%	94.24%

7B results – Prompt tuning

- 2000 test samples used
- *N* = train sample size
- *V* = number of virtual tokens

V N	8	25	80
50	64.9%	61.2%	57.3%
150	86.25%	76%	83.55%
500	88.4%	89.75%	94.1%
2500	95.3%	95.55%	96.15%

7B results – LoRA

- 2000 test samples used
- *N* = train sample size
- *d* = dropout
- Experiments with r = 8, $\alpha = 16$

d N	0.0	0.1	0.2
50	91.05% (2)	90.4% (2)	92.15% (2)
150	95.4% (2)	94.1% (1)	95.3% (2)
500	95.3% (1)	96.05% (1)	96.35% (2)
2500	96.1% (1)	96.85% (2)	96.25% (2)

Maximizing performance

- Based on the 7B experiments, we tried to maximize accuracy on all models
- Used all train samples, ran for 2 epochs
- Used all test samples for evaluation
- LoRA, r = 8, $\alpha = 16$, d = 0.1, learning rate: $5 \cdot 10^{-4}$

Model size	7B	13B	70B
Accuracy	96.98%	97.32%	96.812%

↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @ ▶ ↓

- All models beat the previous best of 96.21%
- 70B preforms the worst, but this is expected, hyperparameter optimization is critical