Project report

Vilmos Szirmai

May 2024

1 Introduction

The topic of my project is related to the automotive industry and is done in a fellowship
program at Bosch. In automotive manufacturing, it is critically important to detect both
design flaws and faulty components. One approach is to listen to the noise: undesirable
noise in a car component can be used to infer various manufacturing or design defects. The
aim of the project is to develop machine learning models to localize the source of noise from
measurements of vibrations in order to locate the errant parts. To get signals for modeling
purposes, we excited parts with an automatic hammer and recorded time signals at several
points. The noise is measured with a laser vibrometer, resulting in a signal of velocities as a
function of time.

In this report, several approaches are presented to the above problem, discussing modeling
choices, metrics of error, model performances, and also different scopes of generalizations.

2 Approach

The approach is to find out where the measurement was made. This is because it is equivalent
to localizing the excitation. We went around this using two methods:

e A regression approach to estimate distance from the excitation point
e Discretizing by dividing the component into parts

The first method aims to (relatively) precisely determine the location of the measurement
point. In this case, the error-measuring metric is the Euclidean distance. The second ap-
proach may be somewhat more practical. However, the problem here arises from merely
considering how accurately the model is able to predict the label of the range. In this sce-
nario, we might also count as an error when the model misclassifies a point that was located
on the boundary of the range.



3 Formal description of the task

Since our task in both approaches is to predict where the measurements have been taken, we
need to take a coordinate system. The origin of this coordinate system should be placed at
one of the corners of the plate or part, and in addition a positive x- and y-direction should
be taken. This is an absolute system, after taking them together with the measurement
and excitation points, then retaining them for each measurement. Both the excitation and
measurement points are stored with coordinates, plus they have a point index assigned to
them by the measurement software.

In case of coordinate estimation of a measurement point, it is given what we are referencing
and what will provide the labels for our supervised learning task. But when we discretize,
we need some kind of system by which to group the points.

To do this, we have several built-in algorithms in Python, such as K-means or Gaussian
Mixture, both of which divide the points into a fixed number of clusters based on the planar
coordinates. Now let us move on to possible generalizations.

4 Generalizations

e Generalization over different forces (measured in Newton)
We investigated whether the models can generalize between different forces. The result
was that they can if they have to predict from smaller forces to bigger ones. We got
much different accuracy scores when we used nearest neighbor interpolation and simple
feedforward neural networks (this will be shown in the last paragraph).

e Generalization over different excitation shapes
Models are not too sensitive to this, so this generalization seems to be solved.

¢ Generalization over distance prediction from different excitation points
A harder instance, models only achieve from 1 cm to 7 cm mean error.

e Generalization over distance estimation on different automotive parts
It looks almost impossible to solve. Models had from 18 cm to 77 ¢m mean error.

¢ Generalization by finding an appropriate embedding
It is thought to be a valid approach to use self-supervision to find a proper embedding.
It is by exploiting the inner structure of time signals to predict both discrete clusters
and distances.



5 Elements of the measurement setup
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Figure 1: Schematic figure of the measurement setup

Figure 1 depicts the measurement setup. As the hammer strikes the component, a wave
is generated. The laser vibrometer calculates from the temporal changes in the laser beam
how fast the component vibrates at a given point at each moment in time. These temporal
signals are later utilized to solve both classification to predict the label of the part of the
measurement point, and regression tasks to estimate distance.

6 Categorization

There are four categorization aspects for the data.

e Excitation shape: There are various excitation shapes, including single, double, triple
and multiple, among others. Figures illustrating single and double hits, along with
explanations of the phenomena, can be found in the appendix.

e Force applied

e Direction of the excitation: This is a very simple one, because it has only two
versions: +7 and -Z depending on the direction in which the hammer strikes in the
coordinate system.



e Location of the excitation: This aspect serves the purpose of logically associating
the estimated distances with the points of excitation.

7 The prediction

7.1 Distance estimate by interpolation

The current main estimation method, interpolation, employs a nearest neighbor approach.
This method assumes that closely located measurement points will yield similar time signals.
It utilizes Euclidean distances between points in a matrix to assign values to new points.
Initially, there was a notable improvement in accuracy, with average error dropping from 5
cm to 1 ecm. Though some challenges have arisen, this progress indicates a promising new
direction.

7.2 Triangulation

This method utilizes three excitation points, each estimating the distance to a given mea-
surement point. The predicted measurement point is determined by the common intersection
of the circles drawn from these excitation points. While theoretically sound, numerical errors
and their accumulation can lead to deviations. To address this, a straightforward approach
was adopted: if circles should intersect but do not due to distance estimate errors, the mid-
point between the intersections of the segments connecting their centers with the circles will
be the predicted point. This method ensures robustness by providing estimates even in cases
where direct intersection is not feasible, initially discarded to avoid ambiguity.

7.3 Working with triggered signals

At this point, it should also be mentioned that we abandoned the idea of working with the
whole time series, as we realized that the resting phase at the beginning contains a lot of
information about the distance from the excitation point, but this is due to the fact that the
measurements were always made in a predefined time window. In reality, the excitation will
hit the sensor unexpectedly, so we have switched to working with triggered signals, which
are generated by cutting off the portion of the signal at the beginning that does not reach a
given level in absolute value (usually set to 0.01).

7.4 Discretization

This approach involves decomposing the component into clusters based on x-y coordinates.
Future adaptations aim to discretize potential error sources into clusters. The program
code resembles previous distance estimation methods but operates on cluster labels instead.
A strong correlation between the number of clusters (varied between 3 and 8) and model
accuracy was observed.



8 Models and their performance

8.1 Triangulation

Method Min error Max error Mean error Std Number of estimations Under 0.5 cm
Interpolation 0.0 0.38 0.003 0.03 174 172
Pol. regression  4.58 - 10~ 17 0.0016 0.0002 0.0004 542 542

Table 1: Performance of triangulation

The minimum error, maximum error, mean error, and standard deviation (std) are all
measured in meters. It is important to note that the second set of measurements is signif-
icantly superior to the first. This improvement stems from its application to automotive
parts, which are smaller in scale compared to the metal sheet. As a result, all the data exist
within a smaller range, contributing to a more precise assessment.

8.2 Cluster prediction

As it was mentioned before, a correlation was observed between the number of clusters and the
accuracy score. However, it is evident that this model struggles to generalize across distinct
excitation points and various automotive parts. This limitation arises from the diverse signal
shapes generated by different excitation points and the considerably varied discretizations
present in different automotive components. Figures of performances can be found in the
appendix.

8.3 Summary and further concepts

Overall, we observe that interpolation distance estimation works relatively well, particularly
when providing estimates for identical components and even more so when the time signals
are captured from the same excitation point. Consequently, triangulation also yields rela-
tively good results. Polynomial regression offers slightly better estimates, but its drawback
lies in the slow fitting to data and considering too many variables. To circumvent this, in
the future, we will prefer using Lasso, Forward Selection or Elastic Net.

Interpolation may also be suitable for discretization label estimation; however, this cannot
be generalized as it depends on the nature of the component. Furthermore, neural networks
significantly outperform interpolation in terms of accuracy scores, so we will lean towards
this direction in the future.



A Figures of cluster prediction accuracy scores
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Figure 2: Accuracy matrices with different generalizations using interpolation

In Figure 2 rows of the matrices correspond to training sets i.e. which set the nearest
neighbor method used as a reference, and the columns correspond to test sets i.e. to which
signals the method had to predict.

On the next page we can also see a similar pair of figures corresponding to accuracy scores
achieved by a feedforward neural network. It had only two hidden layers with sizes 32 and
64 respectively.
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Figure 3: Accuracy matrices with different generalizations using neural network

B Excitation shapes

Since there are various excitation shapes, which is one of the categorization aspects, below
we can see what they look like.
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Figure 4: Schematic figures of different excitation shapes



In Figure 4, on the left-hand side, we can see the single hit, in which case, the hammer
excites the component only once. The resting phase is when the wave has not yet reached the
measurement, point, followed by an elevation, and then the force diminishes. On the right-
hand side, the double hit is depicted. In this case, as the hammer excites the component, it
rebounds, hitting the hammer again, thus receiving excitation twice, hence the two elevation
phases in the applied force.

C Further modeling techniques

C.1 Logistic regression

The first was the attempt to predict the indices of points using logistic regression. To do
this, we simply took the time signals, and the corresponding label was the point index. The
problem with this was that we did not have enough data to create a distinct training and
test set. So, they were the same, thus the model could trivially predict unseen labels. We
tried to solve this by repeating the measurements, but then the signal shapes were extremely
similar, so it was trivial to predict the label again. Furthermore, this model was extremely
sensitive to the time shift of the signal shapes. When we shifted the signals in time, accuracy
score dropped to 0.02. Thus, this approach was quickly discarded.

C.2 Coordinate prediction by linear regression

Next came a model that attempted to predict the coordinates straight away, and this was
linear regression. This did not seem so bad at first, but it was off by an average of 5 cm in
absolute deviation for the x-coordinates and 1 ¢cm on average for the y-coordinates, making
it almost impossible to predict the measurement point correctly.

C.3 Distance estimate by linear regression

Then came the approach that is still one of the main directions of the project, that is, esti-
mating the distance from the excitation point. Here again, we initially tried linear regression,
which was also off by an average of 5 cm.

C.4 Predicting the excitation point

This method is based on trying to estimate the angle of the line connecting the measurement
and the excitation point with the x-axis, and then to obtain the coordinates of the excitation
point by writing the equations of two lines and determining their intersection. Yes, but while
in theory this method works perfectly, in practice it was not as easy to estimate the angle as
we thought, so the model did not predict the excitation point very well.



