Application of artificial intelligence methods for route planning on multilayered maps

> Made by Domonkos Rózsay Supervised by Csaba Sidló

Problem at hand:

Pathfinding on weighted maps
<u>Input</u> is vectorized or rasterized

Graph based approachGeometry based approach

- Why use this?
- Dijkstra finds optimal path to everywhere
- We only need one end destination
- How to search nodes "closer" to goal?
- With heuristic!
- g(v) = f(v) + heu(v)

- The first paper with A* in 1968
- It is already well documented
- When is it optimal?
- Admissible if it never overestimates the cost of reaching the goal
 - For all X: $h(X) \le h^*(X)$
 - Where h(X) is cost indicated by heu and $h^*(X)$ is the optimal cost to reach the goal from X

- The first paper with A* in 1968
- It is already well documented
- When is it optimal?
- Consistent if its estimate is always less than or equal to the estimated distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour.
 h(X) ≤ c(X,Y) + h(Y) and h(goal) = 0

Every node has 4 neighbours

Every node has 8 neighbours but bad heuristic

Bad heuristic vs good heuristic

Using it on real data

Using it on real data

Geometry based approach Why use this? 1. Straight path 2. If no blocking --> finished 3. If blocking try to bypass • Two ways: left and right 4. Store the two paths, look for the shortest, and iterate from step 2

Geometry based approach

- How to bypass two ways?
- How to find visible points?
- What order to reach them?
- Next steps, other improvements

 X_{ς}

 \times_{τ}

Geometry based approach

- How to bypass two ways?
- How to find visible points?

- What order to reach them?

 Continuous dijkstra, wavefronts
- Next steps, other improvements

Thank you for your attention!