Security Analysis and Vulnerabilities of TEGTSS-I Digital Signature Schemes

Beáta Nagy

Supervisors: Dr. János Tapolcai, Dr. Bence Ladóczki

May 30, 2024

Beáta Nagy

Project work

May 30, 2024

1/12

Security of digital signature schemes

- Possible attacks:
 - Based on attacker's knowledge: key-only, known-message, chosen-message, **adaptively chosen-message attack**
 - Based on the goal: total break, forgery (universal, selective, existential forgery)
- \rightarrow existential forgery against adaptively-chosen message attacks
- security proofs: computational hardness of mathematical problems, reduction
- e.g. Integer Factorization Problem, **Discrete Logarithm Problem**, Shortest Vector Problem, SAT Problem
 - DLP: finding x in the equation $g^x \equiv h \mod p$
- hash functions: one-way property

- based on the algebraic properties of modular exponentiation and the discrete logarithm problem
- examples: **Schnorr**, DSA (US-standard), KCDSA (Korean-standard)
- idea: generalization of security proofs
- Trusted El Gamal Type Signature Scheme (TEGTSS)
 - two types, based on the use of the hash function
 - unforgeable relative to the DLP
 - use of the Random Oracle Model (ROM): hash functions are ideal random functions, programmable

- Non-existence in reality
- Programmability, observability
- Heuristic nature in security proofs \rightarrow not applicable outside ROM
- Becomes vulnerable when replaced with actual hash functions

Modified Schnorr signatures

- Idea: construction of a vulnerable signature scheme, see if it fits the TEGTSS-I properties → vulnerability of the scheme
- Original Schnorr Signature Scheme:
 - signature: $s \equiv r + h(msg|R) \cdot x \mod q \rightarrow (s, R)$
 - verification: $g^s == R \oplus X^{h(msg|R)} \mod p$
- Modified Schnorr Signature Scheme:
 - hash only includes the message
 - signature: $s \equiv r + h(msg) \cdot x \mod q$

p, *q*: large primes, q|p - 1 *g*: generator element of order *q* in \mathbb{Z}_p^* *s*: signature, $S = g^s \mod p$ *r*: random element in \mathbb{Z}_q^* , $R = g^r \mod p$ h = h(msg|R): hashed message in \mathbb{Z}_q^* *x*: secret key in \mathbb{Z}_q^* , $X = g^x \mod p$

- Can be easily forged:
 - choosing *s* arbitrarily in \mathbb{Z}_q^*
 - computing *h*(*msg*)
 - computing $R = g^s \ominus X^{h(msg)} \mod p$
 - valid (s, R) pair without the knowledge of the secret key

Application on TEGTSS-I.

- Three functions are defined:
 - signature: $F_1() = s \mod q$
 - $\boldsymbol{R} = \boldsymbol{g}^{F_2()} \cdot \boldsymbol{X}^{F_3()}$
 - $F_2() = s \mod q$
 - $F_3() = h \mod q$
- Additional hashing of nonce: $N = h_n(R)$
- Requirements:
 - $F_2(F_1()) + \mathbf{x} \cdot F_3(F_1)) = \mathbf{r} \mod \mathbf{q}$ applies
 - if h = h', then $F_3() = F'_3()$ applies by definition
 - one-to-one map between the values of *h* and *N* does not apply
- Question: does one-to-one mapping change security results?

э.

- forking lemma: if the attacker can construct a valid signature using a random oracle for hashing, then, the forking algorithm rewinds the attacker to a point before querying the random oracle \rightarrow different RO response, two valid signatures for the same $R \rightarrow$ extraction of the secret key
- $s s' = (h h') \cdot x \mod q$
- Main theorem: if an attacker can find a valid signature for a new message with probability ϵ , then, with less than Q queries to the random oracle, with constant probability 1/96, with less than $25Q/\epsilon$ replays of the attacker, with different random oracles, the secret key x will be extracted
 - extracting x implies solving the DLP \rightarrow impossibility of probability ϵ of finding a valid signature

Security proof of TEGTSS-I on modified Schnorr

- proof is based on finding two distinct representations of $R \rightarrow F_2$ or F_3 values have to differ
- forking lemma only applies to TEGTSS-I, intuition: applies here too (*R* depends on one less variable - the probability of finding one more verifying tuple with the same *R* does not decrease)
- one-to-one mapping in TEGTSS: used for proving that $F_3 = F'_3$ has vanishingly small probability given that $R = R' \rightarrow$ here $F_3() = h$, can only happen if $msg = msg' \rightarrow$ collision-resistance of message hash function, vanishingly small probability

< □ > < 同 > < 三 > .

- intuition: omitting the one-to-one map property of TEGTSS-I schemes does not change security results
- question of reducibility under ROM assumption to the DLP
- Future directions:
 - construct a more thorough argument of security problem with the ROM model
 - finding an instance that fits all the TEGTSS-I requirements, but is vulnerable in practice
 - investigation of other security proofs in the ROM model

References

Gianluca Dini (2023)

Digital Signatures: Types of Attacks and Security Considerations

Network Security 13-17. Available at: http://docenti.ing.unipi.it/g.dini/Teaching/sanna/lecturenotes/ applied-cryptography-digital-signature.pdf

Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung (2001)

Design Validations for Discrete Logarithm Based Signature Schemes *PKC 2000 1751*. https://doi.org/10.1007/978-3-540-46588-1 19

Pascal Paillier and Damien Vergnaud (2005)

Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log

Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005, Proceedings 3788, 1–20. https://lacr.org/archive/asiacrypt2005/001/001.pdf

Claus-Peter Schnorr (1989)

Efficient Identification and Signatures for Smart Cards

Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings 435, 239-252. https://doi.org/10.1007/0-387-34805-0_22

David Pointcheval and Jacques Stern (2001)

Security Arguments for Digital Signatures and Blind Signatures Journal of Cryptology 13.

https://doi.org/10.1007/s001450010003

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

◆□> ◆□> ◆三> ◆三> 三三 のへで