Security Analysis and Vulnerabilities of TEGTSS-I Digital Signature Schemes

Beáta Nagy

Supervisors: Dr. János Tapolcai, Dr. Bence Ladóczki
May 30, 2024

Security of digital signature schemes

- Possible attacks:
- Based on attacker's knowledge: key-only, known-message, chosen-message, adaptively chosen-message attack
- Based on the goal: total break, forgery (universal, selective, existential forgery)
- \rightarrow existential forgery against adaptively-chosen message attacks
- security proofs: computational hardness of mathematical problems, reduction
- e.g. Integer Factorization Problem, Discrete Logarithm Problem, Shortest Vector Problem, SAT Problem
- DLP: finding x in the equation $g^{x} \equiv h \bmod p$
- hash functions: one-way property

El Gamal Type Signature Schemes

- based on the algebraic properties of modular exponentiation and the discrete logarithm problem
- examples: Schnorr, DSA (US-standard), KCDSA (Korean-standard)
- idea: generalization of security proofs
- Trusted El Gamal Type Signature Scheme (TEGTSS)
- two types, based on the use of the hash function
- unforgeable relative to the DLP
- use of the Random Oracle Model (ROM): hash functions are ideal random functions, programmable

Issues with ROM

- Non-existence in reality
- Programmability, observability
- Heuristic nature in security proofs \rightarrow not applicable outside ROM
- Becomes vulnerable when replaced with actual hash functions

Modified Schnorr signatures

- Idea: construction of a vulnerable signature scheme, see if it fits the TEGTSS-I properties \rightarrow vulnerability of the scheme
- Original Schnorr Signature Scheme:
- signature: $s \equiv r+h(m s g \mid R) \cdot x \bmod q \rightarrow(s, R)$
- verification: $g^{s}==R \oplus X^{h(m s g \mid R)} \bmod p$
- Modified Schnorr Signature Scheme:
- hash only includes the message
- signature: $s \equiv r+h(m s g) \cdot x \bmod q$
p, q : large primes, $q \mid p-1$
g : generator element of order q in \mathbb{Z}_{p}^{*}
s : signature, $S=g^{s} \bmod p$
r : random element in $\mathbb{Z}_{q}^{*}, \quad R=g^{r} \bmod p$
$h=h(m s g \mid R)$: hashed message in \mathbb{Z}_{q}^{*}
x : secret key in $\mathbb{Z}_{q}^{*}, \quad X=g^{x} \bmod p$

Modified Schnorr signatures

- Can be easily forged:
- choosing s arbitrarily in \mathbb{Z}_{q}^{*}
- computing $h(m s g)$
- computing $R=g^{s} \ominus X^{h(m s g)} \bmod p$
- valid (s, R) pair without the knowledge of the secret key

Application on TEGTSS-I.

- Three functions are defined:
- signature: $F_{1}()=s \bmod q$
- $R=g^{F_{2}()} \cdot X^{F_{3}()}$
- $F_{2}()=s \bmod q$
- $F_{3}()=h \bmod q$
- Additional hashing of nonce: $N=h_{n}(R)$
- Requirements:
- $\left.F_{2}\left(F_{1}()\right)+x \cdot F_{3}\left(F_{1}\right)\right)=r \bmod q$ applies
- if $h=h^{\prime}$, then $F_{3}()=F_{3}^{\prime}()$ applies by definition
- one-to-one map between the values of h and N - does not apply
- Question: does one-to-one mapping change security results?

Security proof of TEGTSS-I

- forking lemma: if the attacker can construct a valid signature using a random oracle for hashing, then, the forking algorithm rewinds the attacker to a point before querying the random oracle \rightarrow different RO response, two valid signatures for the same $R \rightarrow$ extraction of the secret key
- $s-s^{\prime}=\left(h-h^{\prime}\right) \cdot x \bmod q$
- Main theorem: if an attacker can find a valid signature for a new message with probability ϵ, then, with less than Q queries to the random oracle, with constant probability $1 / 96$, with less than $25 Q / \epsilon$ replays of the attacker, with different random oracles, the secret key x will be extracted
- extracting x implies solving the DLP \rightarrow impossibility of probability ϵ of finding a valid signature

Security proof of TEGTSS-I on modified Schnorr

- proof is based on finding two distinct representations of $R \rightarrow$ F_{2} or F_{3} values have to differ
- forking lemma only applies to TEGTSS-I, intuition: applies here too (R depends on one less variable - the probability of finding one more verifying tuple with the same R does not decrease)
- one-to-one mapping in TEGTSS: used for proving that $F_{3}=F_{3}^{\prime}$ has vanishingly small probability given that $R=R^{\prime} \rightarrow$ here $F_{3}()=h$, can only happen if $m s g=m s g^{\prime} \rightarrow$ collision-resistance of message hash function, vanishingly small probability

Conclusion

- intuition: omitting the one-to-one map property of TEGTSS-I schemes does not change security results
- question of reducibility under ROM assumption to the DLP
- Future directions:
- construct a more thorough argument of security problem with the ROM model
- finding an instance that fits all the TEGTSS-I requirements, but is vulnerable in practice
- investigation of other security proofs in the ROM model

References

Gianluca Dini (2023)
Digital Signatures: Types of Attacks and Security Considerations
Network Security 13-17.
Available at: http://docenti.ing.unipi.it/g.dini/Teaching/sanna/lecturenotes/
applied-cryptography-digital-signature.pdf
Ernest Brickell, David Pointcheval, Serge Vaudenay, and Moti Yung (2001)
Design Validations for Discrete Logarithm Based Signature Schemes
PKC 20001751.
https://doi.org/10.1007/978-3-540-46588-1_19
Pascal Paillier and Damien Vergnaud (2005)
Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log
Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the Theory and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005, Proceedings 3788, 1-20.
https://iacr.org/archive/asiacrypt2005/001/001.pdf
Claus-Peter Schnorr (1989)
Efficient Identification and Signatures for Smart Cards
Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings 435, 239-252.
https://doi.org/10.1007/0-387-34805-0_22
David Pointcheval and Jacques Stern (2001)
Security Arguments for Digital Signatures and Blind Signatures
Journal of Cryptology 13.
https://doi.org/10.1007/s001450010003

Thank you for your attention！

