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1. Introduction
The information theory paradigm, rooted in Shannon’s foundational work from the 1940s [6], has gained
significant traction in Machine Learning and Neural Networks. Self-supervised learning, which involves
models predicting one part of the input from another, reflects principles akin to entropy maximization.
Despite its historical significance, several fundamental questions persist in the field. One major challenge
is the usage of information entropy in real-world scenarios due to the absence of underlying Probabi-
lity Density Functions (PDFs), leaving only observed data. This obstacle necessitates accurate entropy
estimation solely from observed data, driving the need for flexible, non-parametric methods like the k-
nearest neighbor (kNN) approach pioneered by Kozachenko and Leonenko [4]. However, the classical
kNN estimator exhibits bias, particularly in higher dimensions [5]. A significant part of my investigation
involved identifying and applying the most effective projection techniques to reduce dimensionality while
preserving essential information. This initiative is driven by a comparative analysis of various projec-
tion methods, including Principal Component Analysis (PCA) and variance-based techniques. These
methods are well-regarded for capturing the global structure of data. By integrating these with the
locality-sensitive kNN approach, I aim to refine our methods for entropy estimation and improve our un-
derstanding of complex data distributions in reduced-dimensional spaces. This comprehensive approach
is intended to mitigate the biases associated with high-dimensional kNN entropy estimation and enhance
the overall accuracy of entropy measures.

2. PCA and the Kozachenko-Leonenko estimate

2.1. Definition (Principal Component Analysis). According to Jolliffe [3] PCA is defined as an ortho-
gonal linear transformation on a real inner product space that transforms the data to a new coordinate
system such that the greatest variance by some scalar projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the second coordinate,
and so on.
Consider an n× p data matrix, X, with column-wise zero empirical mean.
The transformation is defined by a set of size l of p-dimensional vectors of weights or coefficients w(k) =
(w1(k), . . . , wp(k))

⊤ that map each row vector X(i) = (x1(i), . . . , xp(i)) of X to a new vector of principal
component scores t(i) = (t1(i), . . . , tl(i)), given by

tk(i) = X(i) ·w(k) for i = 1, . . . , n and k = 1, . . . , l,

in such a way that the individual variables t1, . . . , tl of t considered over the data set successively inherit
the maximum possible variance from X, with each coefficient vector w constrained to be a unit vector
(where l is usually selected to be strictly less than p to reduce dimensionality).
The above may equivalently be written in matrix form as

T = XW,

where Tik = tk(i), Xij = xj(i), and Wjk = wj(k).
First component
In order to maximize variance, the first weight vector w(1) thus has to satisfy

w(1) = argmax
∥w∥=1

{∑
i

(X(i) ·w)
2

}
(1)

Equivalently, writing this in matrix form gives

w(1) = argmax
∥w∥=1

{
∥Xw∥2

}
= argmax

∥w∥=1

{
w⊤X⊤Xw

}
2.2. Definition (Entropy). Let X be a discrete random variable with probability mass function PX(x),
x ∈ X . The entropy (or Shannon entropy) of X is
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H(X) = E
[
log

1

PX(X)

]
=

∑
x∈X

PX(x) log
1

PX(x)
(2)

=

∫
X
PX(x) log

1

PX(x)
dx. (3)

2.3. Definition (k-Nearest Neighbour Kozachenko-Leonenko estimator). According to definition intro-
duced in the paper written by Ao and Li [1]. Let x1, x2, . . . , xn (n ≥ 3) be i.i.d. random variables with
density f on Rd. Let us indentify the k-nearest neighbors (in terms of the p-norm distance) for each xi
and define the smallest closed ball covering them as:

B(xi,
εi
2
) = {x ∈ Rd|∥x− xi∥p ≤ ε

2
},

where ε is twice the distance of xi and its k-th nearest neighbour, and the mass of B(xi,
εi
2 ) is:

qi(εi) =

∫
x∈B(xi,

εi
2 )

PX(x)dx⇒ E(log(qi)) = ψ(k)− ψ(N),

where ψ(N) is equal to Γ
′
(x)

Γ(x) with Γ(x) being the Gamma function. The main assumption of the KL
estimation is that the density is constant within the unit ball approximated by qi(εi) ≈ cdε

d
iPX(xi),

where d is the dimension of X and cd is given by
Γ(1+ 1

p )
d

Γ(1+ d
p )

, which is the volume of the d-dimensional unit
ball according to the given p-norm. This yields the final KL-estimator formula:

ĤKL = ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log(εi). (4)

3. Dimensionality Reduction using Autoencoders
I explored dimensional reduction using autoencoders, systems designed to encode high-dimensional data
x ∈ Rinput dim into a more compact latent space z ∈ Rlatent dim through an encoder function fenc, and
then reconstruct it via a decoder function fdec, where z = fenc(x) and x′ = fdec(z) [2]. This investigation
initially centered on the interplay between such projections and variance-based dimensionality reduction
methods. Two specific types of autoencoders were examined: a Nonlinear Autoencoder, which employs
multiple hidden layers with ReLU activations, and a Linear Autoencoder that uses a single linear
transformation for both encoding and decoding. The models were trained using the Mean Squared Error
(MSE) loss and the Adam optimizer. To generate suitable data, I first produced multidimensional normal
distributions with an emphasis on clustering around a hyperplane by scaling select dimensions, and also
employed Cholesky decomposition to create sets of decorrelated Gaussian data.
I assessed entropy in a high-dimensional dataset and its lower-dimensional projections derived from
two autoencoder models, comparing these against both analytical methods and the KL-estimate. The
visualizations indicated that, generally, the nonlinear autoencoder performed best at entropy estimation
in lower-dimensional spaces, as shown in Figure 1. In cases where data closely resembled Gaussian
distributions, the linear autoencoder’s projections—akin to PCA results—yielded entropy estimates that
closely matched the analytical values, particularly in dimensions exceeding 60. This observation highlights
the effectiveness of variance-based methods in handling Gaussian-like data, and the capability of linear
autoencoders to produce projections that are not only comparable to PCA but also enhance entropy
estimation. These findings encouraged further exploration into the relationship between these projection
techniques and more complex data scenarios, aiming to understand better how these models preserve
critical information for accurate entropy assessment.
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((a)) First data - full dimension range ((b)) First data - lower dimension range

((c)) Second data - full dimension range ((d)) Second data - lower dimension range
Figure 1. Comparison of entropy estimation across dimension sizes

The plot color scheme is coherent: blue indicates the analytic entropy, orange represents the original dimensional KL-
estimate, green stands for the linear projection KL-estimate, and red signifies the nonlinear projection. The ’first data’
pertains to the initial data generation process, while the ’second data’ corresponds to the decorrelated Gaussian data.

4. Projections preserving maximal entropy
I aimed to delve deeper into advanced and appropriate projection methods that would be more beneficial
for this specific area. Autoencoders, through their loss functions, capture and focus on PCA-like and
variance-based relationships. However, I now seek a change of perspective by exploring the mathematical
foundations of Principal Component Analysis (PCA) and variance against the entropy estimates derived
from the Kozachenko-Leonenko (KL) method.
PCA operates under the assumption that the data is Gaussian distributed and it is effective in reducing
dimensionality while preserving as much variance as possible, capturing the global structure of the data.
In contrast, the KL method estimates entropy by considering the distances to the nearest neighbors
within the data. This method does not rely on a specific distribution but instead generalizes to the
geometry of the data within a unit ball (or a unit circle in the 2D case). By focusing on nearest neighbor
relations, the KL method captures the local structure and variability of the data, providing a more
accurate entropy estimate for complex, non-Gaussian distributions. This shift in perspective highlights
the trade-off between PCA and the KL method. By integrating these insights, I hope to develop more
effective projection methods for analyzing lower-dimensional spaces.

.
4.1. Definition (Maximum Sliced Entropy). The formal definition of max sliced entropy was introduced
by Dor Tsur, Ziv Goldfeld, and Kristjan Greenewald [7]. Given a random variable X with distribution
µX in Rd, the k-dimensional Maximum Sliced Entropy (MSE) of X, denoted as shk(X), is defined by:

shk(X) = sup
A∈St(k,d)

h(ATX),

where St(k, d) represents the Stiefel manifold of all d × k matrices with orthonormal columns, and h
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denotes the differential entropy.

Maximum Sliced Entropy (MSE) is instrumental in capturing the most informative features of high-
dimensional data. MSE, by projecting the data onto lower-dimensional subspaces, aims to maximize
the entropy across various data slices, thus ensuring that the projections retain significant diversity and
information content of the original dataset.

4.1. PCA and Max Sliced Entropy
Based on the paper by Tsur, Goldfeld and Greenewald [7] an important connection for Gaussian data
was also formally revealed.
Proposition. (Equivalence of Max-Sliced Entropy and PCA)
Let X ∼ N(m,Σ) with m = 0 and Σ ∈ Rd×d being full-rank. The equivalence between the max-sliced
entropy and PCA is established under the assumption that the k-dimensional PCA for Σ is given by the
optimization problem:

sup
A∈St(k,d)

tr(ATΣA),

where APCA is the matrix that contains the first k eigenvectors of Σ, which correspond to its largest k
eigenvalues.
Proof:
Define the max-sliced entropy of X, shk(X), as:

shk(X) = sup
A∈St(k,d)

h(ATX) = sup
A∈St(k,d)

1

2
log

(
(2πe)k det(ATΣA)

)
,

which simplifies further using the properties of the determinant and eigenvalues:

= sup
A∈St(k,d)

1

2

k∑
i=1

log(2πeλi(A
TΣA)) =

1

2

k∑
i=1

log(2πeλi(Σ)),

where the second equality is derived from the differential entropy of a k-dimensional Gaussian random
vector and the last equality holds due to the eigenvalue relations:

λd−k+i(Σ) ≤ λi(A
TΣA) ≤ λi(Σ) for i = 1, . . . , k.

This is justified by the Poincaré separation theorem which implies the interlacing of the eigenvalues
of Σ and ATΣA. The monotonicity of the logarithm function then concludes the proof, showing the
equivalence between the maximization of the entropy h(ATX) via PCA and the optimization of the
variance captured by the top k components.

5. A new approach for estimating the direction
Recognizing that PCA is an effective estimator of Max Sliced Entropy in data that exhibits Gaussian
characteristics, I wanted to construct an algorithm that strategically segments the dataset to enhance its
Gaussian-likeness using Gaussian Mixture Models (GMMs). Furthermore, it incorporates a component
weighing system that captures a balance between local and global properties of the data. This weighing
system remains intentionally generalized to accommodate future explorations and refinements. To ensure
consistency in the direction of the principal component vectors, I transformed each PCA vector into a
canonical form. Specifically, if the first component of the PCA vector wk was negative, I multiplied the
entire vector by −1. This can be expressed as:

wcanonical
k =

{
wk if wk1 ≥ 0

−wk if wk1 < 0
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In further exploring the structure of cluster connections, I employed a novel approach by representing
each cluster by a single point in a higher-dimensional space. This representation allowed me to analyze
the relationships between clusters by projecting these points onto a line. The primary focus was to
examine the entropy of these projections.

Figure 2. Structure of entropies at different angle projections
The first plot shows the entropy and Gini coefficient of projections at different angles and helps identify angles that maximize
or minimize the randomness and inequality of the point distribution, while the second plot provides a visual representation
of the point distribution at particular "peak" angle.

The findings revealed that the uniformity of the nearest neighbor distances, quantified using Gini coef-
ficients, was a key metric in capturing the maximization of entropy. Significantly, I found that peaks in
the projection entropy were associated with two main properties: one is the uniformity of the nearest
neighbor distances, and the other is the length of these distances. These insights suggest that not only
the dispersion of points impacts entropy but also the relative distances among them. This dual aspect
underscores the importance of spatial relationships in the data, influencing the entropy outcomes and
providing a deeper understanding of how entropy behaves in response to changes in cluster configurations.
Moving forward, I aim to incorporate this knowledge into the development of a more sophisticated algo-
rithm. The goal is to integrate the understanding of uniformity and distance measures into the weighing
method used within the algorithm.
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