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Introduction

Elliptic partial differential equations can be solved numerically with finite element or finite
difference discretization. These methods involve introducing a set of discrete grid points in the
domain of the studied boundary value problem, where the exact solution is approximated. This
process results in a system of linear equations that can be solved by an iterative method.

In the last semester, my work focused on the finite difference method. Various nonsymmetric
elliptic problems have been solved with two commonly used iterative methods: the precondi-
tioned CGN and GCR algorithms. The basis of comparison was the size of the norm of the
vector field in the differential equation. I observed that the CGN method could solve the result-
ing problems with less iterative steps when the norm of the vector field was small, while the
GCR method performed significantly better when the norm was larger.

The aim of this project is to compare the performance of the preconditioned CGN and GCR
algorithms when solving convection-dominated elliptic problems, for which the discretization
is carried out with the streamline diffusion finite element method. I examined how the results
depend on the coefficients of the PDE, and compared it with my previous work.

Convection-dominated elliptic problems

Let us consider the following boundary value problem:{
−ε∆u+w ·∇u = f
u|∂Ω = 0

where Ω = [0,1]2, ε > 0 is a constant, w ∈C1(Ω,R2) and div(w) = 0. These conditions guaran-
tee that the PDE has a unique weak solution for any function f ∈ L2(Ω). The second-order term
−ε∆u models diffusion, while the nonsymmetric term w ·∇u models convection. The constant
ε is typically chosen to be close to zero, which makes the convection term more dominant.

In this particular problem, the standard finite element method (FEM) does not perform well. It
can be improved by modifying the bilinear form in a special way and splitting it up elementwise.
This is called streamline diffusion finite element method (SDFEM).

First of all, let us see how the standard FEM would look like in the case of convection-dominated
elliptic problems. We are going to use uniformly spaced grid points of length h and Courant
elements. The construction starts with the weak form of the problem:∫

Ω

(ε∇uh ·∇vh +(w ·∇uh)vh) =
∫

Ω

f vh, ∀vh ∈Vh,

where the finite dimensional subspace Vh is given by the Courant elements (piecewise linear
functions on a uniform triangular mesh).
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One of the major problems with this approach is that the bilinear form

a(u,v) :=
∫

Ω

(ε∇u ·∇v+(w ·∇u)v)

is coercive with the lower bound ε ≈ 0, and by this, the ratio of the upper and lower bounds
M
ε

in Céa’s lemma becomes very large. However, if we choose the test functions in the form
wh := vh+δw ·∇vh, where vh ∈Vh and δ > 0 is constant, and we use the Petrov–Galerkin weak
form of the problem, then we obtain the following bilinear form, provided that w is piecewise
constant:

aSD(u,v) :=
∫

Ω

(ε∇u ·∇v+(w ·∇u)v+δ (w ·∇u)(w ·∇v))

Therefore, the discretized problem has the form

aSD(uh,vh) =
∫

Ω

f (vh +δw ·∇vh) =: l(vh), ∀vh ∈Vh.

By this extension of the bilinear form, the lower estimate in coercivity becomes independent of
ε , which stabilizes the convergence of the finite element method.

Implementation of the SDFEM

The implementation was based on the work in [3], but it needed to be extended because it
worked originally only for constant vector fields that highly limited its applicability.

We define a basis on the inner grid points of the triangulation with the usual tent functions. The
resulting basis functions {φ j}N

j=1 are used to determine the system of linear equations whose
solution will yield the coefficients for the linear combination of the basis functions producing
the numerical solution. The system has the form Fc= f, where [F ]i, j = aSD(φ j,φi) and fi = l(φi).
Vector f is approximated with the one-point Gauss quadrature:

fi =
∫

Ω

f (φi +δw ·∇φi) =
∫

Ω

f φi +δ

∫
Ω

f w ·∇φi ≈ f (xi,yi)
∫

Ω

φi = f (xi,yi) ·h2

Here the second term vanishes with the one-point approximation because
∫

Ω
∂xφi =

∫
Ω

∂yφi = 0
in our construction of the uniform triangular mesh. The elements of matrix F can be calculated
according to [3] when w ≡ (wx,wy) is constant. When w is not constant, we are still able to
reduce the problem to the constant case with the one-point quadrature:∫

Ω

(w ·∇φ j)φi =
∫

Ω

(wx∂xφ j)φi +
∫

Ω

(wy∂yφ j)φi ≈

wx(xi,y j)
∫

Ω

((1,0) ·∇φ j)φi +wy(xi,y j)
∫

Ω

((0,1) ·∇φ j)φi

δ

∫
Ω

(w ·∇φ j)(w ·∇φi) = δ

∫
Ω

w2
x∂xφ j∂xφi +δ

∫
Ω

w2
y∂yφ j∂yφi +δ

∫
Ω

wxwy(∂xφ j∂yφi +∂yφ j∂xφi)≈

δw2
x(xi,y j)

∫
Ω

((1,0) ·∇φ j)((1,0) ·∇φi)+δw2
y(xi,y j)

∫
Ω

((0,1) ·∇φ j)((0,1) ·∇φi)+

δwx(xi,y j)wy(xi,y j)
∫

Ω

(((1,1) ·∇φ j)((1,1) ·∇φi)− ((1,0) ·∇φ j)((1,0) ·∇φi)− ((0,1) ·∇φ j)((0,1) ·∇φi))
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A further generalization of the problem is when the differential equation is in the form of

−ε ·div(p∇u)+w ·∇u = f ,

where p ∈ L∞(Ω) and p(x) ≥ m > 0 (a.e. x ∈ Ω). The bilinear form corresponding to this new
problem differs only in its first term from the previous one:∫

Ω

−ε ·div(p∇φ j)φi =
∫

Ω

ε p∇φ j ·∇φi ≈ p(xi,y j)
∫

Ω

ε∇φ j ·∇φi.

I implemented in Matlab the finite element method for this general version of the convection-
dominated elliptic problems according to the previous calculations. Parameter δ in the method
usually has a magnitude of O(h). In my construction it is always δ := h unless otherwise spec-
ified. The obtained system of linear equations can be solved with the preconditioned CGN
and GCR methods that I have already implemented in Matlab in the previous semester. These
iterative algorithms run until the norm of the residual error vector rn gets below 10−5. The
preconditioner matrix was chosen to be the symmetric part of the matrix, i.e. S := F+FT

2 .

Convergence of the SDFEM

I wanted to verify that the implemented method approximates the exact solution with an error
of O(h). For this numerical experiment, let us consider the following functions and coefficients:

ε := 10−2; p(x,y) := 1+
x2 + y2

2
; w(x,y) := (−y− 1

2
, x− 1

2
);

f (x,y) :=−ε(p(x,y)(−2x(1− x)−2y(1− y))+ x(1−2x)y(1− y)+ y(1−2y)x(1− x))+
+wx(x,y)(1−2x)y(1− y)+wy(x,y)(1−2y)x(1− x).

Function f was chosen in a way that the exact solution is u(x,y) = x(1−x)y(1−y). It is clearly
visible from table 1 that doubling the grid density roughly halves the error, indeed.

Figure 1: Numerical solution of the test problem for grid density n = 16, 32, 64.

n 8 16 32 64 128 256

e 0.0371 0.0240 0.0136 0.0071 0.0034 0.0015

Table 1: The largest difference between the numerical and exact solution in the grid points (e)
with respect to the grid density (n).
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Comparison of the iterative methods

Let us consider the following two sets of boundary value problems depending on k and m:{
−10−m∆u+ k(1, 0) ·∇u = 1
u|∂Ω = 0

{
−10−m∆u+ k(−y− 1

2 , x− 1
2) ·∇u = 1

u|∂Ω = 0

Question: How does the number of iterative steps change for the preconditioned CGN and GCR
algorithms as we decrease ε and increase the norm of the vector field w?

We can see in the graphs of figures 2 and 3 that in case of the SDFEM discretization (in contrast
to the finite difference method), the preconditioned CGN algorithm always takes less steps than
the GCR. Comparing the two sets of boundary value problems, the graphs look similar, but their
asymptotic behaviour is different.

In figure 2 when the vector field is constant (left), after the first peak at around k = 1, the two
curves are getting closer to each other while approaching zero. On the other hand, in case of the
rotating vector field (right), the two curves maintain the same distance and they settle at a value
near the peak.

In figure 3, both curves are ascending. However, their growth is bounded above and they reach
their peak at around m = 6. After the peak, the number of iterations slowly decreases for the
constant vector field, while the other one maintains the same iteration number onwards.

Figure 2: Number of iterative steps taken by the preconditioned CGN and GCR algorithms to
solve the system of linear equations with tolerance 10−5 when m = 2 is fixed and k is varied.

Figure 3: Number of iterative steps taken by the preconditioned CGN and GCR algorithms to
solve the system of linear equations with tolerance 10−5 when k = 1 is fixed and m is varied.
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The boundedness of the curves in figure 3 has been studied in [1]. The characteristic curves of
the vector field w = (1,0) can be parameterized with γs(t) := (t,s), where (s, t) ∈ [0,1]2 = Ω.
The absolute value of the determinant of its Jacobian matrix can be calculated as follows:

Jw(s, t) =
∣∣∣∣det

(
∂s(t) ∂t(t)
∂s(s) ∂t(s)

)∣∣∣∣= ∣∣∣∣det
(

0 1
1 0

)∣∣∣∣= |−1|= 1

This is bounded from below and above by µ = µ̃ := 1. From this, we can calculate

Cw = diam(Ω) ·
√

µ̃/µ = diam(Ω) =
√

12 +12 =
√

2.

The streamline Poincaré–Friedrichs inequality described in [1] gives an upper bound for the
number of iterations independent of ε . In case of the CGN method, the bound is the following:(

∥rk∥S

∥r0∥S

) 1
k

≤ 2
1
k · Cw

Cw +2δ

According to the previous calculations, when Cw =
√

2 and δ := h = 0.01, then ∥rk∥S = 10−5

should be reached after at most around 954 iterative steps. In the graph of figure 3 we can see
that actually less than 100 steps were enough for the algorithm to reach the desired accuracy.

Connection with my previous results

In my earlier work when I studied the finite difference method, the CGN algorithm was better
for small numbers k, and the GCR algorithm proved to be faster for sufficiently large numbers
k. A similar relation can be observed now for the standard FEM when δ = 0, and the transition
to the graph in figure 2 can be seen if we gradually increase parameter δ from 0 to h = 10−2.

Figure 4: Number of iterative steps taken by the preconditioned CGN and GCR algorithms for
δ = 0, 10−5, 5 ·10−5, 10−4, 10−3, 10−2 when m = 2 is fixed and k is varied.
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