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Summary of my previous work

Let us consider the following nonsymmetric elliptic boundary value
problem on Q = [0,1]%:

Lu:=—div(pVu)+w-Vu="f,
U‘()Q =0.

If the functions satisfy these conditions:

p € L(Q), p(x) > m>0(a.e. x€Q);
w e CH{Q, R?), divw =0,

then the PDE has a unique weak solution for any f € L2(Q).

The exact solution of the PDE can be approximated with the finite
difference method (FDM) or the finite element method (FEM).
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Previous results for the FDM

1. Introduce a set of discrete grid points in €.

2. Approximate the partial derivatives in the grid points with finite
differences, obtain a system of linear equations Ax = b.

3. Solve it with an iterative method: preconditioned CGN or GCR.
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Convection-dominated elliptic problems

Let us consider the following nonsymmetric elliptic boundary value
problem on Q = [0,1]%:

—eAu+w-Vu="f
ulpa =0

where € > 0 is constant and w satisfies the previous conditions.

o —&/Au models diffusion
@ w-Vu models convection

@ £~ 0, which makes the convection term more dominant.

The solution is usually irregular (e.g. has large jumps), so the
traditional numerical methods are not applicable here.
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The SDFEM / 1.

We will use the streamline diffusion finite element method
(SDFEM) to solve this special boundary value problem.

The weak solution of the problem is u € H}(2) for which
a(u,v) = /(SVU Vv+(w-Vu)v /fv Vv € H3(Q).
Q

Problem: The lower bound of a(u,v) is € ~ 0, which makes the
constant Iarge in Céa's lemma slowing down the convergence.

Solution: Stablllse the coercivity bound by modifying a(u, v):
asp(u,v) ::/(£Vu~Vv+(w-Vu)v+5(w-Vu)(w~Vv)),
Q

where § > 0 is a given parameter.
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The SDFEM / II.

We create a uniform triangular mesh in Q with distance h and
construct the finite dimensional subspaces V}, C H}(2) with
Courant elements (piecewise linear functions on the triangles).

We are looking for the uniquely existing uj, € V}, for which
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aSD(uh, Vh) = /;2 f(vh+5W'VVh) =: /(Vh), Vv, € V.
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Implementation of the SDFEM / I.

Let us define the basis functions {q)j}jN:l in Vj, with the tent
functions as shown above. We can express uj, with them:

N
up =Y c#;
A

If we choose the test function vp, := ¢@;, then we obtain the equation
Ac = f, where [A],J = aSD(Q)j,Q)i) and f,‘ = /((P,)

The components of matrix A and vector f can be approximated
with the one-point quadrature:

f;:/ﬂf(¢i+6w~V¢i):/Qf(iJiJrS/QfW-V(Pi%f(Xi,y,')/Qq)i:f(XiaYi)‘h2v

where the second term vanishes as [ dx¢; = [y ¢; =0.



o 8/15
Implementation of the SDFEM / II.

The terms of asp (¢}, ¢;) can be approximated similarly, for example:
[ w900 = [ (wdraoi+ [ (w,oy0)0:~
WX(XI'ayj)/Q((17O) ' V¢J)¢I + Wy(Xian)/Q((O’ 1) : V¢J)¢I;

where the case of constant w can be calculated as in [3].

Implementation: Matlab.
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Convergence of the SDFEM

The numerical solution is expected to converge to the exact
solution with an error of O(h). Let us test the convergence:
x?+y? . 1 1

=102 =147 ey x— =
£:=10"%  p(x,y)=1+ 5 w(x,y):=(-y 5 X 2)

We choose f such that the solution is u(x,y) = x(1—x)y(1—y).
Doubling the grid density roughly halves the error:

8 16 32 64 128 256
0.0371 | 0.0240 | 0.0136 | 0.0071 | 0.0034 | 0.0015

Numerical solution for n=16 Numerical solution for n=32 Numerical solution for n=64
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Comparison of the iterative methods

Let us consider the following two sets of convection-dominated
elliptic problems depending on k and m:
{—10’"Au—|— k(1,0)-Vu=1 {—10’"Au+ k(—y -1, x=1).Vu=1

ulgg =0 ulgg =0

We can perform SDFEM discretisation on these problems.
Problem: We need to solve the system of equations Ac =f.

Question: How does the number of iterative steps change for the
preconditioned CGN and GCR algorithms as we decrease € and
increase the norm of the vector field w?

@ The SDFEM parameter 6 := h;

. . T
@ The preconditioner matrix S := %'

o The iterative methods run until the error ||r,||s < 1075.



Increasing the norm: m is fixed, k is varied
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Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms to solve Ac =f when m =2 is fixed and k is varied.
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Changing &8, while m is fixed, k is varied

Number of iterations for n =100 Number of iterations for n = 100

Number of iterations for n = 100
- PreceN

= CaN.
800 |36 PreGCR 400 |- GCR!

Number of terations.
Number of terations.

8 8
Number of terations.

2 25 30 35 40 o 5 10 15 20 25 3
Value of k Value of k
Number of iterations for n =100 Number of iterations for n = 100

5 10 15 20 25 3 3 40 o 5 w0 15
Value of k

Number of iterations for n = 100

Number of terations
Number of iterations

Number of iterations

0 5 10 15 2 25 3 3 40 o 5 10 15 20 25 3 3 40 0 5 10 15 20 25 30
Value of k Value of k Value of k

Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms for § =0, 107°, 5-107%, 107*, 1073, 1072 when m =2
is fixed and k is varied.
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Decreasing €: k is fixed, m is varied
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Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms to solve Ac =f when k =1 is fixed and m is varied.
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Note on the shape of the previous graphs

The streamline Poincaré—Friedrichs inequality described in [1] gives
an upper bound for the number of iterations independent of €.

The characteristic curves of the vector field w = (1,0) can be
parameterised with ¥(t) := (t,s), where (s,t) € Q = [0,1]>.

(30 50)| e o)

This is bounded from below and above by u = ji :=1.
Cu = diam(Q) /[ /1 = diam(Q) = V12 +12 = V2.

In case of the CGN method, the bound is the following:

1
<Hrn”5>"§2‘ Cw
llrolls Cu+26

Jw(s,t) =

3=
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