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Summary of my previous work

Let us consider the following nonsymmetric elliptic boundary value
problem on Ω= [0,1]2:{

Lu :=−div(p∇u)+w ·∇u = f ,
u|∂Ω = 0.

If the functions satisfy these conditions:{
p ∈ L∞(Ω), p(x)≥m > 0 (a.e. x ∈ Ω);

w ∈ C 1(Ω, R2), divw = 0,

then the PDE has a unique weak solution for any f ∈ L2(Ω).

The exact solution of the PDE can be approximated with the finite
difference method (FDM) or the finite element method (FEM).
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Previous results for the FDM

1. Introduce a set of discrete grid points in Ω.
2. Approximate the partial derivatives in the grid points with finite
differences, obtain a system of linear equations Ax = b.
3. Solve it with an iterative method: preconditioned CGN or GCR.
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Convection-dominated elliptic problems

Let us consider the following nonsymmetric elliptic boundary value
problem on Ω= [0,1]2:{

−ε∆u+w ·∇u = f

u|∂Ω = 0

where ε > 0 is constant and w satisfies the previous conditions.

−ε∆u models diffusion
w ·∇u models convection
ε ≈ 0, which makes the convection term more dominant.

The solution is usually irregular (e.g. has large jumps), so the
traditional numerical methods are not applicable here.
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The SDFEM / I.

We will use the streamline diffusion finite element method
(SDFEM) to solve this special boundary value problem.

The weak solution of the problem is u ∈ H1
0 (Ω) for which

a(u,v) :=
∫
Ω
(ε∇u ·∇v +(w ·∇u)v) =

∫
Ω
fv , ∀v ∈ H1

0 (Ω).

Problem: The lower bound of a(u,v) is ε ≈ 0, which makes the
constant M

ε
large in Céa’s lemma slowing down the convergence.

Solution: Stabilise the coercivity bound by modifying a(u,v):

aSD(u,v) :=
∫
Ω
(ε∇u ·∇v +(w ·∇u)v +δ (w ·∇u)(w ·∇v)),

where δ > 0 is a given parameter.
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The SDFEM / II.

We create a uniform triangular mesh in Ω with distance h and
construct the finite dimensional subspaces Vh ⊂ H1

0 (Ω) with
Courant elements (piecewise linear functions on the triangles).

We are looking for the uniquely existing uh ∈ Vh for which

aSD(uh,vh) =
∫
Ω
f (vh+δw ·∇vh) =: l(vh), ∀vh ∈ Vh.
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Implementation of the SDFEM / I.

Let us define the basis functions {φj}Nj=1 in Vh with the tent
functions as shown above. We can express uh with them:

uh =
N

∑
j=1

cjφj

If we choose the test function vh := φi , then we obtain the equation
Ac = f, where [A]i ,j = aSD(φj ,φi ) and fi = l(φi ).

The components of matrix A and vector f can be approximated
with the one-point quadrature:

fi =
∫
Ω
f (φi+δw·∇φi )=

∫
Ω
f φi+δ

∫
Ω
f w·∇φi ≈ f (xi ,yi )

∫
Ω

φi = f (xi ,yi ) ·h2,

where the second term vanishes as
∫
Ω ∂xφi =

∫
Ω ∂yφi = 0.
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Implementation of the SDFEM / II.

The terms of aSD(φj ,φi ) can be approximated similarly, for example:∫
Ω
(w ·∇φj )φi =

∫
Ω
(wx∂xφj )φi +

∫
Ω
(wy∂yφj )φi ≈

wx (xi ,yj )
∫
Ω
((1,0) ·∇φj )φi +wy (xi ,yj )

∫
Ω
((0,1) ·∇φj )φi ,

where the case of constant w can be calculated as in [3].

Implementation: Matlab.
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Convergence of the SDFEM

The numerical solution is expected to converge to the exact
solution with an error of O(h). Let us test the convergence:

ε := 10−2; p(x ,y) := 1+
x2+ y2

2
; w(x ,y) := (−y − 1

2
, x− 1

2
)

We choose f such that the solution is u(x ,y) = x(1−x)y(1−y).

Doubling the grid density roughly halves the error:

n 8 16 32 64 128 256
e 0.0371 0.0240 0.0136 0.0071 0.0034 0.0015
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Comparison of the iterative methods

Let us consider the following two sets of convection-dominated
elliptic problems depending on k and m:{
−10−m∆u+k(1, 0) ·∇u = 1
u|∂Ω = 0

{
−10−m∆u+k(−y − 1

2 , x−
1
2 ) ·∇u = 1

u|∂Ω = 0

We can perform SDFEM discretisation on these problems.

Problem: We need to solve the system of equations Ac = f.

Question: How does the number of iterative steps change for the
preconditioned CGN and GCR algorithms as we decrease ε and
increase the norm of the vector field w?

The SDFEM parameter δ := h;
The preconditioner matrix S := A+AT

2 ;
The iterative methods run until the error ∥rn∥S < 10−5.
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Increasing the norm: m is fixed, k is varied

Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms to solve Ac = f when m = 2 is fixed and k is varied.
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Changing δ , while m is fixed, k is varied

Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms for δ = 0, 10−5, 5 ·10−5, 10−4, 10−3, 10−2 when m = 2
is fixed and k is varied.
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Decreasing ε : k is fixed, m is varied

Figure: Number of iterative steps taken by the preconditioned CGN and
GCR algorithms to solve Ac = f when k = 1 is fixed and m is varied.
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Note on the shape of the previous graphs

The streamline Poincaré–Friedrichs inequality described in [1] gives
an upper bound for the number of iterations independent of ε .

The characteristic curves of the vector field w = (1,0) can be
parameterised with γs(t) := (t,s), where (s, t) ∈ Ω= [0,1]2.

Jw(s,t) =

∣∣∣∣det
(

∂s(t) ∂t(t)
∂s(s) ∂t(s)

)∣∣∣∣= ∣∣∣∣det
(

0 1
1 0

)∣∣∣∣= |−1|= 1

This is bounded from below and above by µ = µ̃ := 1.

Cw = diam(Ω) ·
√

µ̃/µ = diam(Ω) =
√

12+12 =
√

2.

In case of the CGN method, the bound is the following:(
∥rn∥S
∥r0∥S

) 1
n

≤ 2
1
n · Cw

Cw+2δ
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