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Introduction, motivations

• Importance of examining data and covariance.

• How can we describe matrices of data e�ectively?

• Perturbation problem: how can we model noisy observation.

• Application of perturbation problem with examples.
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Singular vectors and values of matrices

• First singular value and vector of A.

• σ1 := max
|v |=1

|Av | and v1 := argmax
|v |=1

|Av |.

• By induction, let σi be the i-th singular value of matrix A (for

i = 2 . . . r) and let denote the i-th singular vector of matrix A
by vi , if

σi = max
v :|v |=1,v⊥v1,...vi−1

|Av | and vi = argmax
|v |=1,v⊥v1,v2...vi−1

|Av |.
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Equivalent de�nition for singualar vectors and values

• We assume that A ∈ Rd1×d2 with rank n. There exists only

one U ∈ Rd1×n and V ∈ Rd2×n orthogonal and Σ ∈ Rn×n

positive de�nit diagonal matrix with, that

A = UΣV T =
n∑

i=1

σiuiv
T
i ,

.

• Here Σ11 = σ1 > Σ22 = σ2 > . . .Σnn = σn > 0,

• ui and vi are the i-th columns of U and V ,

• and σi and vi are the i-th singular values and vector of matrix

A.
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First simulated theorem-O'Rourke, S.; Vu, V.; Wang, K.:

I simulated the theorem of this slide with two diagrams.

• The matrix E is called Bernoulli matrix if

E = [E ]i ,j , P(Ei ,j = 1) := P(Ei ,j = −1) := 0.5

with independent coordinates.

• The theorem of O'Rourke, Vu, Wan with Bernoulli matrix: if A

is data matrix with (low) rank r and E is a random Bernoulli

matrix, then for every ε > 0 there exist constants C , δ0 > 0

such that if

σ1 − σ2 := δ ≥ δ0 and σ1 ≥ max{n,
√
n · δ}.

then with a probability at least 1− ε the inequality

sin
(
< (v1, v

′
1)
)
≤ C ·

√
r

δ

ful�ls (where sin (< (v1, v
′
1)) is the sinus of the closed angle of

the �rst singular vector of A and A+ E ).
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First simulation

• A: I chose out three deterministic matrices with only four non

zero elements, with corresponding δ and rank 2.

• E : I added 400 independent Bernoulli matrices E to them, so I

got 400 · 3 new matrices (A+ E )
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Figure: Sine of closed angles of the �rst singular vector of A and A+ E with a

simple two-rank matrix A and Bernoulli matrix E .
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First simulation-second diagram

• A: I chose one random matrix from Wishart distribution with

rank 2.

• E : I added 100 independent Bernoulli matrices E to it, so I got

100 new matrices (A+ E )
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Figure: Sine of closed angles with Wishart matrix A and Bernoulli matrix

E .
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Second simulated theorem

• I simulated another theorem with two diagrams, too. Now I

will de�ne some notions:

• If M = [Mij ] ∈ Rd1×d2 as follows:

∥M∥max := max
ij

|Mij | , ∥M∥∞ := max
i

d2∑
j=1

|Mij | .

• µ := µ(V ) :=
d2
n

·max
i

∑n
j=1 V

2
ij .

• Let Ar be the the best rank-r approximation of A under the

Forbenius norm:

Ar :=
r∑

i=1

σiuiv
T
i .

• A′ := A+ E := U ′Σ′V ′T .
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Second simulated theorem-Fan, Jianqing; Wang, Weichen;

Zhong, Yiqiao:

• We suppose that δ > ||E ||2 and σr − ε = Ω(r3µ2||E ||∞),

• where ε = ||A− Ar ||∞.

• If A is symmetric and for any i = 1, . . . r the interval

[σi − δ, σi + δ] does not contain any singular values of A other

than σi , then

||V ′ − V ||max = O

(
r4µ2||E ||∞
(σr − ε)

√
n
+

r
3
2µ

1
2 ||E ||∞
δ
√
n

)
.

• I determined the singular value decomposition of

(A′ = A+ c · E ,A) for every c ∈ [0, 100], and got (V ′,V )
matrices and plotted the mean of the cases of ||V ′ − V ||max

depending on the function of c .
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Figure: Simulation results for Theorem 1 with 0 ≤ c ≤ 100.
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Figure: Simulation results for Theorem 1 with 0 ≤ c ≤ 1.
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Other read articles-curiosities

I read two another articles this semester, I would like to

summarize them shortly.

In Chen, Y.; Cheng, Ch..; Fan, Y.: Asymmetry helps-strong

estimation about the norm of the noise matrix. They could

bound from below the norm of the noise matrix with the

distance of the right and estimated leading eigenvalue.

Benaych-Georges, F.; Nadakuditi, R. R.: the authors examined

the convergence of the corresponding singular values of the low

rank matrices and could give the limit in some special cases.
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Future plans

Deeper understanding of the applications of perturbed random

matrices in statistics.

To understand how the structure (distribution) of the matrix

can a�ect the behaviour of its singular vectors.

To survey the newest articles of the literature of random

perturbed matrices.

To apply the above to real data.
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Thank you for your attention!
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