Random matrices, perturbations and their applications in statistics

Sebestyén Kovács Supervisor: Ágnes Backhausz

Eötvös Loránd University

Thursday 30th May, 2024

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

-

Content

Introduction, motivations

Singular vectors and singular values of matrices

Sebestyén Kovács

Simulation results, theorems

Other read articles-curiosities

5 Future plans, references

Random matrices, perturbations and their applications in statistics

э

• Importance of examining data and covariance.

• How can we describe matrices of data effectively?

- Perturbation problem: how can we model noisy observation.
- Application of perturbation problem with examples.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

< ロ > < 同 > < 三 > < 三 > <

- First singular value and vector of A.
- $\sigma_1 := \max_{|\nu|=1} |A\nu|$ and $\nu_1 := \operatorname*{argmax}_{|\nu|=1} |A\nu|$.
- By induction, let σ_i be the *i*-th singular value of matrix A (for i = 2...r) and let denote the *i*-th singular vector of matrix A by v_i, if

$$\sigma_i = \max_{\boldsymbol{v}: |\boldsymbol{v}| = 1, \boldsymbol{v} \perp \boldsymbol{v}_1, \dots \boldsymbol{v}_{i-1}} |A\boldsymbol{v}| \quad \text{and} \quad \boldsymbol{v}_i = \operatorname*{argmax}_{|\boldsymbol{v}| = 1, \boldsymbol{v} \perp \boldsymbol{v}_1, \boldsymbol{v}_2 \dots \boldsymbol{v}_{i-1}} |A\boldsymbol{v}|.$$

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equivalent definition for singualar vectors and values

• We assume that $A \in \mathbb{R}^{d_1 \times d_2}$ with rank n. There exists only one $U \in \mathbb{R}^{d_1 \times n}$ and $V \in \mathbb{R}^{d_2 \times n}$ orthogonal and $\Sigma \in \mathbb{R}^{n \times n}$ positive definit diagonal matrix with, that

$$A = U\Sigma V^{T} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T},$$

- Here $\Sigma_{11} = \sigma_1 > \Sigma_{22} = \sigma_2 > \dots \Sigma_{nn} = \sigma_n > 0$,
- u_i and v_i are the *i*-th columns of U and V,

.

 and σ_i and v_i are the *i*-th singular values and vector of matrix A.

イロト イボト イヨト イヨト 一日

First simulated theorem-O'Rourke, S.; Vu, V.; Wang, K.:

I simulated the theorem of this slide with two diagrams.

• The matrix E is called Bernoulli matrix if

$$E = [E]_{i,j}, \qquad P(E_{i,j} = 1) := P(E_{i,j} = -1) := 0.5$$

with independent coordinates.

The theorem of O'Rourke, Vu, Wan with Bernoulli matrix: if A is data matrix with (low) rank r and E is a random Bernoulli matrix, then for every ε > 0 there exist constants C, δ₀ > 0 such that if

$$\sigma_1 - \sigma_2 := \delta \ge \delta_0$$
 and $\sigma_1 \ge \max\{n, \sqrt{n} \cdot \delta\}.$

then with a probability at least 1-arepsilon the inequality

$$\sin\left(<(v_1,v_1')\right) \leq C \cdot \frac{\sqrt{r}}{\delta}$$

fulfils (where sin (< (v_1, v'_1)) is the sinus of the closed angle of the first singular vector of A and A + E):

Sebestyén Kovács

Random matrices, perturbations and their applications in statistics

• A: I chose out three deterministic matrices with only four non zero elements, with corresponding δ and rank 2.

E: I added 400 independent Bernoulli matrices E to them, so I got 400 · 3 new matrices (A + E)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

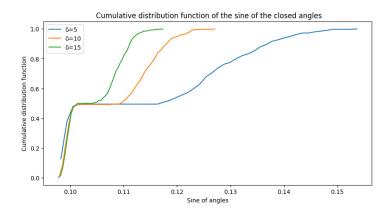


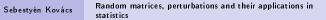
Figure: Sine of closed angles of the first singular vector of A and A + E with a simple two-rank matrix A and Bernoulli matrix E.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

イロト イヨト イヨト イヨト

• A: I chose one random matrix from Wishart distribution with rank 2.

• E: I added 100 independent Bernoulli matrices E to it, so I got 100 new matrices (A + E)



・ロト ・四ト ・ヨト ・ヨト

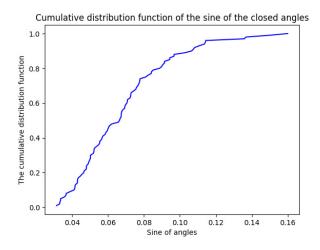


Figure: Sine of closed angles with Wishart matrix A and Bernoulli matrix E.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

Second simulated theorem

• I simulated another theorem with two diagrams, too. Now I will define some notions:

• If
$$M = [M_{ij}] \in \mathbb{R}^{d_1 imes d_2}$$
 as follows:

$$\|M\|_{\max} := \max_{ij} |M_{ij}|, \qquad \|M\|_{\infty} := \max_{i} \sum_{j=1}^{a_2} |M_{ij}|.$$

•
$$\mu := \mu(V) := \frac{d_2}{n} \cdot \max_i \sum_{j=1}^n V_{ij}^2$$
.

• Let A_r be the the best rank-r approximation of A under the Forbenius norm:

$$A_r := \sum_{i=1}^r \sigma_i u_i v_i^T.$$

• $A' := A + E := U'\Sigma'V'^T$.

Random matrices, perturbations and their applications in statistics

イロト 不得下 イヨト イヨト 二日

1

Sebestyén Kovács

Second simulated theorem-Fan, Jianqing; Wang, Weichen; Zhong, Yiqiao:

• We suppose that $\delta > ||E||_2$ and $\sigma_r - \varepsilon = \Omega(r^3 \mu^2 ||E||_{\infty})$,

• where
$$arepsilon = ||A - A_r||_\infty$$
.

• If A is symmetric and for any i = 1, ..., r the interval $[\sigma_i - \delta, \sigma_i + \delta]$ does not contain any singular values of A other than σ_i , then

$$||V' - V||_{\max} = \mathcal{O}\left(\frac{r^4\mu^2||E||_{\infty}}{(\sigma_r - \varepsilon)\sqrt{n}} + \frac{r^{\frac{3}{2}}\mu^{\frac{1}{2}}||E||_{\infty}}{\delta\sqrt{n}}\right)$$

• I determined the singular value decomposition of $(A' = A + c \cdot E, A)$ for every $c \in [0, 100]$, and got (V', V) matrices and plotted the mean of the cases of $||V' - V||_{max}$ depending on the function of c.

Sebestyén Kovács

Random matrices, perturbations and their applications in statistics

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

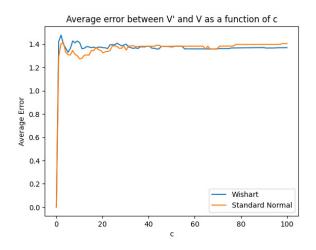


Figure: Simulation results for Theorem 1 with $0 \le c \le 100$.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

э.

æ

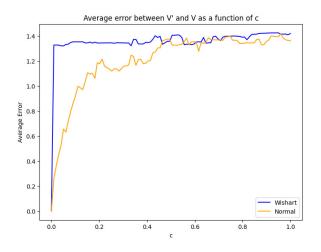


Figure: Simulation results for Theorem 1 with $0 \le c \le 1$.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

・ロト ・ 四ト ・ ヨト ・ ヨト

э

• I read two another articles this semester, I would like to summarize them shortly.

• In Chen, Y.; Cheng, Ch..; Fan, Y.: Asymmetry helps-strong estimation about the norm of the noise matrix. They could bound from below the norm of the noise matrix with the distance of the right and estimated leading eigenvalue.

• Benaych-Georges, F.; Nadakuditi, R. R.: the authors examined the convergence of the corresponding singular values of the low rank matrices and could give the limit in some special cases.

• Deeper understanding of the applications of perturbed random matrices in statistics.

• To understand how the structure (distribution) of the matrix can affect the behaviour of its singular vectors.

- To survey the newest articles of the literature of random perturbed matrices.
- To apply the above to real data.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Benaych-Georges, F.; Nadakuditi, R. R.: The singular values and vectors of low rank perturbations of large rectangular random matrices, J. Multivariate Anal. 111 (2012), 120–135.

- Blum, A.; Hopcroft, J.; Kannan, R.: *Foundations of Data Science*, Cambridge University Press, 2020.
- Chen, Y.; Cheng, Ch..; Fan, Y.: Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices, Annals of statistics, 2021, 49.1: 435.
- Fan, Jianqing; Wang, Weichen; Zhong, Yiqiao: An I[∞] eigenvector perturbation bound and its application to robust covariance, J. Mach. Learn. Res. 18 (2017), Paper No. 207, 42 pp.
- O'Rourke, S.; Vu, V.; Wang, K.: Random perturbation of low rank matrices: Improving classical bounds, Linear Algebra and its Applications 540 (2016), 26–59.

Sebestyén Kovács Random matrices, perturbations and their applications in statistics

イロト イボト イヨト イヨト 一日

Thank you for your attention!

Sebestyén Kovács Random m statistics

Random matrices, perturbations and their applications in statistics

< ロ > < 同 > < 三 > < 三 > <

э