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Ádám Jung

Supervisor: Balázs Csanád Csáji May 2024

1 Introduction

In this document we will present a novel method for
estimating the generating distribution of a sample.

Candidate distributions are proposed from a para-
metric family of distributions and then using non-
asymptotic hypothesis tests with exact type I. error
for distribution fitting, we aim to optimise for param-
eters which define distributions least distinguishable
from the true distribution of the sample.

2 Reproducing Kernel Hilbert Spaces

Let X be an arbitrary set and let H be a Hilbert
space of X → R type functions with inner product
⟨·, ·⟩H. If for all x ∈ X the δx : H → R evaluation
functional (mapping h ∈ H to h(x)) is continuous,
then H is called a Reproducing Kernel Hilbert Space
(RKHS).

A k : X × X → R function is called a positive
definite kernel, if it is symmetric in its arguments
and for all n ∈ N

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0 ∀ai ∈ R, xi ∈ X , i ∈ [n]

(1)
holds. If H is an RKHS then it has the so called
reproducing property i.e. there exists a unique pd
kernel k, satisfying

⟨h, k(·, x)⟩H = h(x) ∀x ∈ X ; ∀h ∈ H. (2)

k is called the reproduciong kernel of H and in fact
k(u, v) is nothing else but the Riesz representer of δx
evaluated at u.

By the Moore-Arnoszjan theorem there is a one to
one correspondence between positive definite kernels
and RKSHs, meaning that given a pd kernel one can
uniquely construct an RKHS Hk with k being its
reproducing kernel.

2.1 Kernel Mean Embedding

Given X and k it is possible to map x ∈ X points to
the (possibly) infinite dimensional function space Hk

by the map x 7→ k(·, x).
There is a similar way to define a map from prob-

ability distributions defined on X to H by taking the
expected value of the mapped values. More formally
if M1

+(X ) denotes the probability distributions de-
fined on X , then the so called kernel mean embedding
(KME) of Q ∈M1

+(X ) is defined as

µQ :=

∫
X
k(·, x)Q(dx). (3)

If E[
√
k(X,X)] < ∞ holds for X ∼ Q, then we

have3

⟨h, µQ⟩ = E[h(X)] ∀h ∈ H, (4)

which can be seen as a reproducing property of the
expectation operation.

If the µ : M1
+ → H kernel mean map is injective,

then the associated kernel is called characteristic. In
this case

||µP − µQ||2H = 0 ⇐⇒ P = Q (5)

and therefore the so called Maximum Mean Dis-
crepany MMD2(P,Q) := ||µP − µQ||2H can be used
to compare distributions for equality.

Using the reproducing property (4) the MMD dis-
tance of distributions P and Q can be expressed as

MMD2(P,Q) = E[k(X,X ′)]−2E[k(X,Y )]+E[k(Y, Y ′)],
(6)

where X ′, Y ′ are independent copies of X, Y with
distributions P , Q respectively.

If we only have an empirical estimate of Q based
on i.i.d. observations x1, . . . , xn; xi ∼ Q then the
empirical counterpart of (3) is

µ̂Q =
1

n

n∑
i=1

k(·, xi). (7)

1



For the MMD of two empirical distributions based on
i.i.d. samples {xi}ni=1, {yi}mi=1 from P and Q respec-
tively, an unbiased estimate for (6) is

M̂MD
2
(P,Q) =

1

n(n− 1)

n∑
i=1

n∑
j=1

k(xi, xj)

− 2

nm

n∑
i=1

m∑
j=1

k(xi, yj)

+
1

m(m− 1)

m∑
i=1

m∑
j=1

k(yi, yj). (8)

Depending on the choice of kernel, if P = Pθ is a
parametric distribution and Q̂ is an empirical distri-
bution based on samples, the expectations defining
MMD2(Pθ, Q̂) might be expressed in closed form, as
a function of the parameters.

Riesz kernel Lets consider the case, when X = Rd

and we use a special case of distance based kernels4

the so called Riesz (aka. energy) kernel :

k(u, v) = −||u− v||r r ∈ (0, 2). (9)

Since k is only conditionally positive definite (ie. (1)
only holds with the additional assumption

∑
i ai =

0), it is needed to define a center point x0 ∈ Rd, and
only the the modified version

k̃(u, v) := −||u− v||r + ||u− x0||r + ||v − x0||r

defines a positive definite kernel. However since we
are only interested in computing the MMD distance
of distributions and the terms in which x0 is present
are cancelled out in (6), it is justified to work with k
instead of k̃ as they provide the exact same results.

In the case of d = r = 1 there are closed
form solutions for MMD2(Pθ, Q̂) for many commonly
used parametric distributions.2 For example if Pθ =
N (µ, σ2), and Q̂ = 1

m

∑m
i=1 δyi

(where δy denotes the
measure of a point mass at y) then

MMD2(Pθ, Q̂) =
4

m

m∑
i=1

(yi − µ)

[
φ

(
y − µ

σ

)
− 1

]

+ 2σ2Φ

(
y − µ

σ

)
− 2σ√

π
− 1

m2

m∑
i=1

m∑
j=1

|yi − yj |,

(10)

where φ and Φ are the density and cumulative dis-
tribution function of N (0, 1) respectively.

Remark 1 Equation (10) is derived based on liter-
ature about proper scoring rules (PSR), which is a
closely related concept to MMD.5 In the PSR litera-
ture there are also available closed form expressions
for other parametric distribution families (e.g. mix-
ture of normal).

3 Hypothesis Tests

Based on the resampling framework described in1 for
binary classification, we will present a similar method
for constructing exact hypothesis tests for distribu-
tion fitting.

Suppose we have a parametric family of probability
distributions

P = {Pθ | θ ∈ Θ}, (11)

and an i.i.d. sample {y1, . . . , yn} from Qθ∗ ∈ P. In
this section our goal is to construct hypothesis tests
for

H0 : Pθ = Qθ∗

H1 : Pθ ̸= Qθ∗ ,

with non-asymptotic guarantees for exact probability
of the type I. error.

Figure 1: Normalized rank statistics for a two param-
eter normal distibution N (µ, σ2). The ranking func-
tion was the second construction of section 5, with
m = 30 generated samples, each with size n = 100.

The algorithm is based on generatingm−1 alterna-
tive set of i.i.d. samples given a candidate parameter
θ, which are denoted as

S(j)(θ) := {y(j)1 , . . . , y(j)n }; y
(j)
1 ∼ Pθ (12)

for j = 1, . . . ,m− 1. For brevity we denote the origi-

nal sample {y1, . . . , yn} with S(0) := {y(0)1 , . . . , y
(0)
n }.

2



A function ψ : Am → [m] is called a ranking func-
tion, if for all a1, . . . , am ∈ A it is is invariant for
reordering its last m− 1 arguments, and for all i ̸= j
we have

ψ(ai, {ak}k ̸=i) ̸= ψ(aj , {ak}k ̸=j).

From Lemma 1 of1 if A1, . . . , Am are exchange-
able (a.s.) pairwise different random elements from
A, then ψ(A1, . . . , Am) has uniform distribution on
{1, . . . ,m}.

Given a ranking function ψ and the S(j)(θ), j ∈
[m] samples, lets define a confidence region for θ∗ as

Θ̃ := {θ ∈ Θ | p ≤ ψ(S(0), {S(k)(θ)}k ̸=0) ≤ q}. (13)

By Theorem 1 of1 for all ψ ranking functions we have

P(θ∗ ∈ θ̃) =
q − p+ 1

m
, (14)

meaning that with an appropriate choice of p, q and
m the type I. error of the test can be exactly con-
trolled.
A method is called consistent, if for all θ ̸= θ∗

P

( ∞⋂
k=1

∞⋃
n=k

{θ ∈ Θ̃n}

)
= 0 (15)

holds, Θ̃n denoting the confidence region based on a
sample of size n.

4 Optimisation

In this section we propose a general method for con-
structing point estimates from the hypothesis tests
of section 3.
Let R(θ) denote the rank of the original sample

among the generated samples, i.e.

R(θ) := ψ(S(0), {S(k)(θ)}k ̸=0). (16)

As we will see in section 5 the proposed ranking func-
tions are defined in a way, that for a false θ ̸= θ∗

parameter the rank of S(0) tends to be the largest.
Therefore we set p = 1 and we are aiming to find
parameters, for which R(θ) is small, since these are
the ones we can only reject with high probability of
type I. error.
Lets define the point estimate as a parameter that

minimizes the rank statistic

θ̂ := min
θ∈Θ

R(θ). (17)

Solving this minimisation can be generally a hard
problem, since R(θ) is a piece-wise constant function

which completely flattens out for parameter values
that are fare from θ∗ (see figure 2, and 1).

In general (17) can be solved with gradient-free op-
timisation methods such as the Nelder–Mead method,
but it is necessary to have a good θ0 initial guess to
successfully start the minimization algorithm.

Remark 2 Quite counter-intuitively for smaller
sample sizes it is easier to start the optimization (17),
since the bigger uncertainty about the parameter re-
sults in much larger confidence regions, therefore it
is more easy to find a sufficient initial θ0. (see fig.
2)

A possible approach for finding θ0 for large sample
sizes is to start with only a subset of the observations,
find θ̂ and then use it as θ0 for a larger subset of the
observations, solving (17) iteratively.

Figure 2: Normalized rank statistics for estimating
the expected value µ ∈ R of a normal distribution
N (µ, 1). There was m = 100 generated samples, and
the ranking function was the first construction of sec-
tion 5.

5 Experiments

In this section we present two constructions for the
ranking function ψ.

i) The first approach is based on the maximum
likelihood equation, i.e. let l(θ; y1, . . . , yn) be the
log-likelihood function of Pθ, and lets define ref-
erence variables Z(i)(θ) for i = 0, . . . ,m− 1 as

Z(i)(θ) := ||∇θl(θ, y
(i)
1 , . . . , y(i)n )||2, (18)

and let

R(θ) = 1 +

m−1∑
i=1

I(Z(i)(θ) < Z(0)). (19)
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ii) The second construction is based on the MMD
distance of Pθ and Q̂ = 1

n

∑n
i=1 δyi

using the
Riesz kernel. The reference variables are defined
as

Z(i)(θ) = MMD2(Pθ, Q̂0), (20)

and R(θ) is constructed the same way as in (19).

Figure 3: The result of 50 repeated estimations of
a mixture model of 0.25 · N (1, 0.3) + 0.75 · N (−1, 1)
with the second construction of section 5, ( n = 60,
m = 3000).
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