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Introduction

Goal : Estimating the generating distribution of a
sample within a parametric family.

Based on : Non-asymptotic hypothesis tests with exact
type I. error probability.

Solution : Optimizing for parameters defining distributions
least distinguishable from the true distribution.
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Reproducing Kernel Hilbert Spaces (RKHS)

� Hilbert space ℋ of functions 𝒳 → ℝ.
� Positive definite kernel 𝑘(⋅, ⋅) : symmetric, satisfies

∑
𝑖,𝑗

𝑎𝑖𝑎𝑗𝑘(𝑥𝑖, 𝑥𝑗) ≥ 0 ∀𝑥𝑖 ∈ 𝒳, ∀𝑎𝑖 ∈ ℝ

� Maps points 𝑥 ∈ 𝒳 to ℋ via 𝑥 ↦ 𝑘(⋅, 𝑥).
� Reproducing property :

⟨ℎ, 𝑘(⋅, 𝑥)⟩ℋ = ℎ(𝑥) ∀ℎ ∈ ℋ, ∀𝑥 ∈ 𝒳
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Kernel Mean Embedding (KME)

� KME of distribution 𝑄 : 𝜇𝑄 = ∫𝒳 𝑘(⋅, 𝑥)𝑄(𝑑𝑥).
� As a consequence of the reproducing property

𝔼[ℎ(𝑋)] = ⟨ℎ, 𝜇𝑄⟩ℋ ∀ℎ ∈ ℋ; where 𝑋 ∼ 𝑄

� Maximum Mean Discrepancy (MMD) :
MMD2(𝑃 , 𝑄) = ‖𝜇𝑃 − 𝜇𝑄‖2

ℋ.
� By the reproducing property :

MMD2(𝑃 , 𝑄) = 𝔼[𝑘(𝑋, 𝑋′)] − 2𝔼[𝑘(𝑋, 𝑌 )] + 𝔼[𝑘(𝑌 , 𝑌 ′)]
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KME with Riesz kernel

� Consider 𝒳 = ℝ𝑑 and the Riesz (or energy) kernel :

𝑘(𝑢, 𝑣) = −‖𝑢 − 𝑣‖𝑟 with 𝑟 ∈ (0, 2).

� In the case of 𝑑 = 𝑟 = 1 there are closed form solutions for
MMD2(𝑃𝜃, 𝑄̂), where

� 𝑄̂ = 1
𝑚 ∑𝑚

𝑖=1 𝛿𝑦𝑖� 𝑃𝜃 ∶ a commonly used parametric distr. family
(e.g., normal, mixture of normal, etc.)
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Hypothesis Tests

� Parametric family 𝒫 = {𝑃𝜃 ∣ 𝜃 ∈ Θ}.
� i.i.d. sample {𝑦1, … , 𝑦𝑛} from 𝑄 ∶= 𝑃𝜃∗

� Construct hypothesis tests for

𝐻0 ∶ 𝑃𝜃 = 𝑄
𝐻1 ∶ 𝑃𝜃 ≠ 𝑄
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Resampling framework

� Let 𝒮(0) denote the original sample {𝑦1, … , 𝑦𝑛}.
� Generate 𝑚 − 1 alternative set of samples 𝒮(𝑗)(𝜃) from 𝑃𝜃 :

𝒮(𝑗)(𝜃) = {𝑦(𝑗)
1 , … , 𝑦(𝑗)

𝑛 } 𝑗 = 1, … , 𝑚 − 1

� Observe that 𝜃 = 𝜃∗ ⟹ 𝒮(0), … , 𝒮(𝑚−1) are exchangeable.
� Let ℛ(𝜃) denote a ranking function, defining the rank of 𝒮(0)

among 𝒮(1)(𝜃), … , 𝒮(𝑚−1)(𝜃).

Theorem
For any ranking function ℛ and parameters 𝑝, 𝑞, 𝑚, we have

ℙ(𝜃∗ ∈ Θ̃) = 𝑞 − 𝑝 + 1
𝑚 , where Θ̃ = {𝜃 ∈ Θ ∣ 𝑝 ≤ ℛ(𝜃) ≤ 𝑞}.
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Let ℛ(𝜃) = 1 + ∑𝑚−1
𝑖=1 𝟙 {‖∇𝜃ℓ(𝜃, 𝒮(𝑖))‖2 < ‖∇𝜃ℓ(𝜃, 𝒮(0))‖2}.

Figure – Normalized rank statistics for 𝑃𝜃 = 𝒩(𝜇, 1), (𝑚 = 100).
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Let ℛ(𝜃) = 1 + ∑𝑚−1
𝑖=1 𝟙 {MMD2(𝑃𝜃, 𝒮(𝑖)) < MMD2(𝑃𝜃, 𝒮(0))}

Figure – Normalized rank statistics for 𝑃𝜃 = 𝒩(𝜇, 𝜎2), (𝑚 = 30).
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Optimization

� Point estimate : ̂𝜃 ∈ arg min𝜃∈Θ ℛ(𝜃).
� Difficulties :

i) ℛ is a piece-wise constant function
ii) Completely flattens out for parameter values far from 𝜃∗

� Possible solutions :
i) Use gradient-free optimization methods (e.g.,

Nelder-Mead)
ii) Start with a small subset of the observations, and find ̂𝜃

iteratively for larger sample sizes
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Figure – The result of 50 repeated estimations of a mixture
0.25 ⋅ 𝒩(1, 0.3) + 0.75 ⋅ 𝒩(−1, 1) with ℛ being the MMD based
construction. (𝑛 = 60, 𝑚 = 3000).
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Thank you for listening
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