Hypothesis test based estimation

Ádám Jung

Supervisor : BALÁZS CSANÁD CSÁJI

2024

2/12

Introduction

- Goal : Estimating the generating distribution of a sample within a parametric family.
- Based on : Non-asymptotic hypothesis tests with exact type I. error probability.
 - Solution : Optimizing for parameters defining distributions least distinguishable from the true distribution.

Reproducing Kernel Hilbert Spaces (RKHS)

Reproducing Kernel Hilbert Spaces (RKHS)

- Hilbert space \mathcal{H} of functions $\mathcal{X} \to \mathbb{R}$.
- Positive definite kernel $k(\cdot,\ \cdot)$: symmetric, satisfies

$$\sum_{i,j} a_i a_j k(x_i,x_j) \geq 0 \qquad \forall x_i \in \mathcal{X}, \forall a_i \in \mathbb{R}$$

- Maps points $x\in \mathcal{X}$ to \mathcal{H} via $x\mapsto k(\cdot,x).$
- Reproducing property :

$$\langle h, k(\cdot, x) \rangle_{\mathcal{H}} = h(x) \qquad \forall h \in \mathcal{H}, \forall x \in \mathcal{X}$$

-Reproducing Kernel Hilbert Spaces (RKHS)

Kernel Mean Embedding (KME)

- KME of distribution $Q: \mu_Q = \int_{\mathcal{X}} k(\cdot, x) Q(dx).$
- As a consequence of the reproducing property

$$\mathbb{E}[h(X)] = \langle h, \mu_Q \rangle_{\mathcal{H}} \quad \forall h \in \mathcal{H}; \quad \text{where } X \sim Q$$

- Maximum Mean Discrepancy (MMD) : $\mathrm{MMD}^2(P,Q) = \|\mu_P - \mu_Q\|_{\mathcal{H}}^2.$
- By the reproducing property :

$$\mathrm{MMD}^2(P,Q) = \mathbb{E}[k(X,X')] - 2\mathbb{E}[k(X,Y)] + \mathbb{E}[k(Y,Y')]$$

-Reproducing Kernel Hilbert Spaces (RKHS)

KME with Riesz kernel

• Consider $\mathcal{X} = \mathbb{R}^d$ and the *Riesz* (or energy) kernel :

$$k(u,v)=-\|u-v\|^r\quad\text{with}\quad r\in(0,2).$$

- In the case of d=r=1 there are closed form solutions for ${\rm MMD}^2(P_\theta,\hat{Q}),$ where

•
$$\hat{Q} = \frac{1}{m} \sum_{i=1}^{m} \delta_{y_i}$$

• P_{θ} : a commonly used parametric distr. family (e.g., normal, mixture of normal, etc.)

Hypothesis Tests

Hypothesis Tests

- Parametric family $\mathcal{P} = \{P_{\theta} \mid \theta \in \Theta\}.$
- i.i.d. sample $\{y_1,\ldots,y_n\}$ from $Q:=P_{\theta^*}$
- Construct hypothesis tests for

$$\begin{split} H_0: P_\theta &= Q\\ H_1: P_\theta \neq Q \end{split}$$

└─Hypothesis Tests

Ádám Jung

7/12

Resampling framework

- Let $\mathcal{S}^{(0)}$ denote the original sample $\{y_1,\ldots,y_n\}.$
- Generate m-1 alternative set of samples $\mathcal{S}^{(j)}(\theta)$ from P_{θ} :

$$\mathcal{S}^{(j)}(\theta) = \{y_1^{(j)}, \dots, y_n^{(j)}\} \qquad j = 1, \dots, m-1$$

- Observe that $\theta=\theta^*\implies \mathcal{S}^{(0)},\ldots,\mathcal{S}^{(m-1)}$ are exchangeable.
- Let $\mathcal{R}(\theta)$ denote a *ranking function*, defining the rank of $\mathcal{S}^{(0)}$ among $\mathcal{S}^{(1)}(\theta), \dots, \mathcal{S}^{(m-1)}(\theta)$.

Theorem

For any ranking function \mathcal{R} and parameters p, q, m, we have $\mathbb{P}(\theta^* \in \tilde{\Theta}) = \frac{q-p+1}{m}$, where $\tilde{\Theta} = \{\theta \in \Theta \mid p \leq \mathcal{R}(\theta) \leq q\}.$

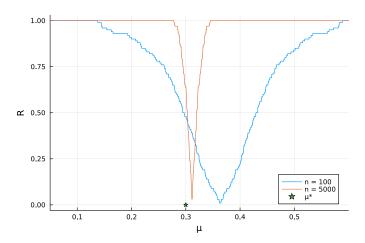
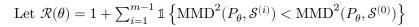


Figure – Normalized rank statistics for $P_{\theta} = \mathcal{N}(\mu, 1), (m = 100).$



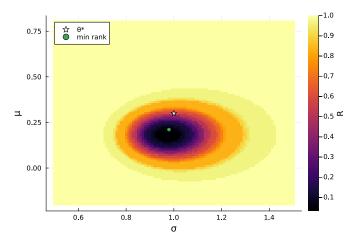


Figure – Normalized rank statistics for $P_{\theta} = \mathcal{N}(\mu, \sigma^2), (m = 30).$

-Optimization

Ádám Jung

10/12

Optimization

- Point estimate : $\hat{\theta} \in \arg\min_{\theta \in \Theta} \mathcal{R}(\theta)$.
- Difficulties :
 - i) ${\mathcal R}$ is a piece-wise constant function
 - ii) Completely flattens out for parameter values far from θ^*
- Possible solutions :
 - i) Use gradient-free optimization methods (e.g., Nelder-Mead)
 - ii) Start with a small subset of the observations, and find $\hat{\theta}$ iteratively for larger sample sizes

Optimization — Example III.

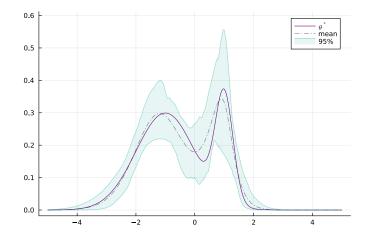


Figure – The result of 50 repeated estimations of a mixture $0.25 \cdot \mathcal{N}(1, 0.3) + 0.75 \cdot \mathcal{N}(-1, 1)$ with \mathcal{R} being the MMD based construction. (n = 60, m = 3000).

THANK YOU FOR LISTENING