Higher Connectivities of Matroids

Dorottya Veronika Farkas
Supervisor: Dr. Tibor Jordán

Eötvös Loránd University
2024

Motivation

Define higher connectivities on matroids such that

- the connectivity number is equal for the matroid and its dual or
- equal for a graph and its graphic matroid.

Connectivity function

Definition

The connectivity-function for all $X \subset E$:

$$
\lambda_{\mathcal{M}}(X):=r(X)+r(E-X)-r(E)
$$

Definition

Let k be a positive integer. A partition (X, Y) of the ground set is a k-separation of \mathcal{M} if

- $\lambda(X)<k$ and
- $\min \{|X|,|Y|\} \geq k$.

Definition

A matroid \mathcal{M} is n-connected when it has no k-separation, for all $k<n$.

Results with k-separation

Claim

\mathcal{M} is n-connected if and only if \mathcal{M}^{*} is n-connected.

Theorem (Tutte)

Let G be a graph with no isolated vertices.

- If $|V(G)| \geq 3$, then $\mathcal{M}(G)$ is 2-connected if and only if G is 2-connected and loopless.
- If $|E(G)| \geq 4$, then $\mathcal{M}(G)$ is 3-connected if and only if G is 3-connected and simple.

Vertical connectivity

Definition

Let k be a positive integer. A partition (X, Y) of the ground set is a vertical k-separation of \mathcal{M} if

- $\lambda(X)<k$ and
- $\min \{\mathbf{r}(X), \mathbf{r}(Y)\} \geq k$.

Definition

Let the vertical connectivity number of \mathcal{M} be

$$
\kappa(\mathcal{M}):=\left\{\begin{array}{l}
\min \{j: \mathcal{M} \text { has no vertical } k \text {-separation for all } k<j\} \\
\quad \text { if } \mathcal{M} \text { has two disjoint cocircuits } \\
r(\mathcal{M}), \text { otherwise }
\end{array}\right.
$$

Results with vertical k-separation

Graphic matroids
Theorem
Let G be a connected graph. Then $\kappa(\mathcal{M}(G))=\kappa(G)$.

Other matroids

Uniform matroids

Claim

$$
\kappa\left(U_{n, r}\right)= \begin{cases}n-r+1, & \text { if } n \leq 2 r-2 \\ r, & \text { otherwise }\end{cases}
$$

Transversal matroids

Claim

$\kappa(\mathcal{T}(G)) \leq|S|-\nu(G)+1$, where $\nu(G)$ is the size of the maximum matching.

Claim

If G is connected, then $\kappa(\mathcal{T}(G)) \leq \kappa(\mathcal{M}(G))+1=\kappa(G)+1$.

Bibliograhy

(1) James G. Oxley (1992): Matroid Theory, Oxford University Press

Thank you for your attention!

