Higher Connectivities of Matroids

Dorottya Veronika Farkas

Supervisor: Dr. Tibor Jordán

Eötvös Loránd University

2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation

Define higher connectivities on matroids such that

- the connectivity number is equal for the matroid and its dual or
- equal for a graph and its graphic matroid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connectivity function

Definition

The *connectivity-function* for all $X \subset E$:

$$\lambda_{\mathcal{M}}(X) := r(X) + r(E - X) - r(E).$$

Definition

Let k be a positive integer. A partition (X, Y) of the ground set is a *k*-separation of \mathcal{M} if

•
$$\lambda(X) < k$$
 and

•
$$\min\{|X|, |Y|\} \geq k$$
.

Definition

A matroid \mathcal{M} is *n*-connected when it has no *k*-separation, for all k < n.

Results with k-separation

Claim

 $\mathcal M$ is *n*-connected if and only if $\mathcal M^*$ is *n*-connected.

Theorem (Tutte)

Let G be a graph with no isolated vertices.

- If $|V(G)| \ge 3$, then $\mathcal{M}(G)$ is 2-connected if and only if G is 2-connected and loopless.
- If $|E(G)| \ge 4$, then $\mathcal{M}(G)$ is 3-connected if and only if G is 3-connected and simple.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Vertical connectivity

Definition

Let k be a positive integer. A partition (X, Y) of the ground set is a vertical k-separation of \mathcal{M} if

- $\lambda(X) < k$ and
- $\min{\mathbf{r}(X), \mathbf{r}(Y)} \ge k$.

Definition

Let the vertical connectivity number of $\mathcal M$ be

 $\kappa(\mathcal{M}) := \begin{cases} \min\{j : \mathcal{M} \text{ has no vertical } k \text{-separation for all } k < j\} \\ \text{if } \mathcal{M} \text{ has two disjoint cocircuits,} \\ r(\mathcal{M}), \text{ otherwise.} \end{cases}$

Results with vertical k-separation

Graphic matroids

Theorem

Let G be a connected graph. Then $\kappa(\mathcal{M}(G)) = \kappa(G)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Other matroids

Uniform matroids

Claim

$$\kappa(U_{n,r}) = \begin{cases} n-r+1, & \text{if } n \leq 2r-2 \\ r, & \text{otherwise.} \end{cases}$$

Transversal matroids

Claim

 $\kappa(\mathcal{T}(G)) \leq |S| - \nu(G) + 1$, where $\nu(G)$ is the size of the maximum matching.

Claim

If G is connected, then $\kappa(\mathcal{T}(G)) \leq \kappa(\mathcal{M}(G)) + 1 = \kappa(G) + 1$.

James G. Oxley (1992): Matroid Theory, Oxford University Press

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ