
Quantile sketch algorithms
— MATH PROJECT —

Author:

Levente Birszki
Applied Mathematics MSc

Supervisors:

Dr. Gábor Rétvári

Senior Research Fellow

Dr. Balázs Vass

Assistant Lecturer

Eötvös Loránd University
Faculty of Science
Budapest, 2023.

1 Introduction

Within the scope of the project, I dealt with the quantile sketch algorithms in data streams. It is a well-
researched area of mathematics that has many practical applications such as big data [1], distributed
systems [2] and the area that led me here, network traffic monitoring. Within the latter, quantile sketches
are used, for example, catching heavy flows [3], attack detection [4] and even in traffic control [5]. The
goal of my report is to present the problem and give an overview of the results so far, asymptotic limits,
and practical implementations.

2 The quantile problem

A sketch S(X) of some data set X with respect to some function f is a compression of X that allows
us to compute, or approximately compute f (X) given access only to S(X). A streaming algorithm is
processing data streams in which the input is presented as a sequence of items and can be examined only
in one pass. Streaming algorithms often produce approximate answers based on a sketch of the data
stream.

Given a stream of items y1,y2, . . . ,yn in some arbitrary order, and let x1 ≤ x2,≤ . . . ≤ xn the sorted
sequence. If its necessary, we can assume, that all the elements are distinct, since instead of yi we can
take (yi, i) with lexicographical ordering.

Definition 2.1. Given an x element from the input stream. r(x), the rank of x is the number of elements
smaller or equal than x in the sorted input.

Definition 2.2. The q-quantile for q ∈ [0,1] is defined to be the element in position ⌈qn⌉ in the sorted
sequence of the input. In other words, the element whose rank is ⌈qn⌉. Denote this element with xq.

There are different versions of this problem. Sometimes an element x is given, and we need to
compute r(x), and sometimes the opposite; given a rank r (or a quantile q) and the task is to return the
item from the stream, with rank r (or ⌈qn⌉). But usually if we can answer one question, we can also
answer the other.

2.1 Theoretical results

Munro and Paterson [6] showed that Ω(n1/p) space is required to determine the quantile q with p passes.
Furthermore, Blum, Floyd, Pratt, Rivest and Tarjan showed, that we need at least 1.5n comparisons to
compute an exact median of a data set of size n [7]. This paper also shows, that 5.43n comparisons is
always sufficient for any quantile.

Later Dor and Zwick showed, that the lower bound for the median is (2+2−40)n, [8], and the upper
bound for an arbitrary quantile 2.9423n [9].

Typically we only have opportunity to a one-pass algorithm, and with limited space, therefore our
main goal is to approximate the quantiles.

Definition 2.3. An element x̃q is an ε-approximate q quantile if ⌈(q− ε)n⌉ ≤ r(x̃q) ≤ ⌈(q+ ε)n⌉. In
other words |r(xq)− r(x̃q)| ≤ εn. This also known as rank error.

Remark. There are other possible ways to define the error of an approximation, e.g. relative error,
which is defined in the paper in which DDSketch was introduced [10]: x̃q is an α-accurate q-quantile if
|x̃q −xq| ≤ αxq, for a given xq. Since most algorithms use the rank-error, I also use that in the following.

In 1974 Yao showed, that computing an approximate median requires Ω(n) comparisons for any
deterministic algorithm. In 2016 Hung and Ting [11] proved, that any comparison-based algorithm for
finding ε-approximate quantiles needs Ω(1

ε
log 1

ε
) space.

1

3 Major milestones

Definition 3.1. In the single quantile approximation problem, given an x1, . . . ,xn input stream in arbitrary
order, q,ε and δ . Construct a streaming algorithm, which computes an ε-approximate q-quantile with
probability at least 1−δ .

Definition 3.2. In the all quantiles approximation problem, given an x1, . . . ,xn input stream in arbitrary
order, ε and δ . Construct a streaming algorithm, which computes an ε-approximate q-quantile with
probability at least 1−δ for all q simultaneously.

Definition 3.3. A sketching algorithm is (fully) mergeable, if given two sketches S1 and S2 created from
inputs X1 and X2, a sketch S of X := X1 ⊔X2 can be created with no degradation in quality of error or
failure probability, and satisfying the same efficiency constraints as S1, S2.

Publication Algorithm Space Complexity Notes

1988 MRL [12] O(1
ε

log2
εn)

non-mergeable, all quantiles
deterministic, comparison-based

1988 MRL [12] O(1
ε

log2 1
ε
+ 1

ε
log2 log 1

δ
)

non-mergeable, all quantiles
randomized, comparison-based

2001 GK [13] O
(1

ε
log(εn)

) non-mergeable, all quantiles
deterministic, comparison-based

2004 q-digest [14] O(1
ε

logu)
mergeable, all quantiles

deterministic, fixed universe (of size u)

2016 KLL [15] O(1
ε

log2 log 1
δ
)

mergeable, singe quantile
randomized, comparison-based

2016 KLL [15] O(1
ε

log2 log 1
δε
)

mergeable, all quantiles
randomized, comparison-based

2016 KLL [15] O(1
ε

log log 1
δ
)

non-mergeable, singe quantile
randomized, comparison-based

2016 KLL [15] O(1
ε

log log 1
δε
))

non-mergeable, all quantiles
randomized, comparison-based

2017 FO [16] O(1
ε

log 1
ε
)

non-mergeable, all quantiles
randomized, comparison-based

2019 SweepKLL [17] O(1
ε

log log 1
δε
))

non-mergeable, all quantiles
randomized, comparison-based

runtime is O(log 1
ε
) instead of O(1

ε
)

Its worth to mention two other sketches; QPipe [18] which is an accelerated version of SweepKLL,
and can be fully implemented in the data plane of a programmable switch, and Moment Sketch [19],
which has no rank error guarantees, but its widely used in practice.

4 MP-sketch

In 1998 Manku, Rajagopalan and Lindsay gave a solution to all quantile approximation problem [12],
based on the work of Munro and Peterson. They gave a uniform framework for three sketching algo-
rithms, including the original MP-sketch. In the followings I’ll sum up the framework, based on their
paper.

Remark. Originally MRL was used for databases. If we want to use it for data streams, we need some
clever sampling, e.g. reservoir sampling [20].

In this framework, we have b buffers, each can store k elements. for each buffer X , we associate
a positive integer w(X), whits denotes its weight. Intuitively, the weight of a buffer is the number
of elements represented by each element in the buffer. There are three operations on a buffer, New,
Collapse and Quantile.

2

4.1 New(X) operation

It takes an empty buffer X as an input. The operation simply populates the input buffer with the next
k elements from the input stream, and set w(X) = 1. If the buffer cannot be filled completely, because
there are less than k remaining elements in the input stream, an equal number of −∞ and ∞ elements are
added to make up the deficit.

4.2 Collapse(X1,X2, . . . ,Xc) operation

Figure 1: Collapse illustrated.
It takes c ≥ 2 full input buffers, X1,X2, . . . ,Xc and outputs a
buffer Y , which is physically use the same space as X1. The
weight of the output buffer is the sum of the weights of the

input buffers, so w(Y) =
c
∑

i=1
w(Xi).

Consider making w(Xi) copies of each element in Xi and
sorting all the input buffers together, taking into account the
multiple copies. The elements of Y are k equally spaced ele-
ments in this (sorted) sequence.

4.3 Quantile(q) operation

This operation is invoked only after the end of the input
stream, when all the elements are processed by the data
structure, and there is only one full buffer X , as the result
of a Collapse operation. It returns the q ·k element of buffer
X .

4.4 Algorithms

An algorithm for computing approximate quantiles consists of a series of invocations of New and Collapse,
and then we can use Quantile as many times, as needed. The key difference between algorithms from
this family is the collapse policy. New populates empty buffers, and Collapse reclaims some of them by
collapsing a chosen set of full buffers. In figure 2 we can see two different collapsing policies.

(a) MP-sketch for b = 6 buffers. (b) MRL-sketch for b = 5 buffers.

Figure 2: Different collapsing policies.

3

5 Our contribution

Our main goal is to create a sketching algorithm that improves its performance using its own predictions.
If we have a sketching algorithm for quantile sketches, we can use it to get an approximation of the CDF
of the input stream. We assume that if we knew something about the distribution of the input, we would
be able to determine its quantiles more efficiently.

I made an implementation of MP-sketch. In this, if we call Collapse on a buffer X with w(X) = 1,
we need to sort the buffer. After this, all the buffers collapse were called on are sorted. Finally we need
to do a slightly modified merge sort.

The idea was, that a sketch could built from scratch, then build a second one, using the first. When
the algorithm inserts a new element, ask the first sketch, what is the rank of that element. Then try to
insert it into the buffers corresponding position. Thus, we get nearly sorted buffers, and we can use a
sorting algorithm that performing well on this kind of input. I this idea works for this sketch, it can be
extended to some more complicated algorithms, like KLL.

5.1 Measures

I tested on two different sized inputs. For both input cases sketch parameters were chosen such that
it guarantees an error rate of ε = 0.001. In the first case, n = 105,b = 6 and k = 3125, while in the
second case, n = 109,b = 17 and k = 15259. The proportion of runtime attributed to each operation is
depicted in figure 3. The results depicted in the figure suggests that expediting the sorting process may
be worthwhile, even at the expense of slowing down the insertion process.

Figure 3: Operation proportions to the runtime in the original sketch. n = 105 left, n = 109 right.

In figure 4 we can see the proportions to the runtime of each operation, in case of biased sketches.
This is already resembles, what we wanted to achive. In figure 5 we observe how the total runtime evolves
in the sketches constructed for the first and second scenarios. Unfortunately, we didn’t achieve any
improvement with either parameterization; in fact, significant degradation is observed with excessively
large buffers.

The cause of this is that there are too many outlier values in the "nearly sorted" buffer, so the used
insertion sort cannot be faster than quicksort.

6 Future plans

Instead of sorting the buffers after the insertions, we could make a sorted list initially. For this, we need a
data structure, on which we can index elements, but at the same time, sorting parts is not too expensive.
This data structure could be the skiplist.

4

Figure 4: Operation proportions to the runtime in the biased sketch. n = 105 left, n = 109 right.

Figure 5: Total runtimes of operations. n = 105 left, n = 109 right.

Furthermore, in practice often we don’t need to support querying all quantiles, or one single quantile,
but only a few specific ones. This is the targeted quantile problem [21], and it would be worthwhile to
explore the literature further on this area.

5

References

1. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, Aug.
2016). http://dx.doi.org/10.1145/2939672.2939785.

2. DeWitt, D. J., Naughton, J. F. & Schneider, D. A. Parallel Sorting on a Shared-Nothing Architecture
Using Probabilistic Splitting in (IEEE Computer Society Press, Miami, Florida, USA, 1991), 280–
291. ISBN: 0818622954.

3. Cormode, G. & Hadjieleftheriou, M. Methods for finding frequent items in data streams. The VLDB
Journal 19, 3–20. ISSN: 0949-877X. https://doi.org/10.1007/s00778-009-0172-z
(Feb. 2010).

4. Kompella, R. R., Singh, S. & Varghese, G. On Scalable Attack Detection in the Network in Proceed-
ings of the 4th ACM SIGCOMM Conference on Internet Measurement (Association for Computing
Machinery, Taormina, Sicily, Italy, 2004), 187–200. ISBN: 1581138210. https://doi.org/
10.1145/1028788.1028812.

5. Vass, B., Sarkadi, C. & Rétvári, G. Programmable Packet Scheduling With SP-PIFO: Theory, Algo-
rithms and Evaluation in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (2022), 1–6.

6. Chan, T. M., Munro, J. I. & Raman, V. Selection and Sorting in the “Restore” Model. ACM Trans.
Algorithms 14. ISSN: 1549-6325. https://doi.org/10.1145/3168005 (Apr. 2018).

7. Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L. & Tarjan, R. E. Time Bounds for Selection.
J. Comput. Syst. Sci. 7, 448–461. https://api.semanticscholar.org/CorpusID:
3162077 (1973).

8. Dor, D. & Zwick, U. Finding the αn-th largest element. Combinatorica 16, 41–58. ISSN: 1439-
6912. https://doi.org/10.1007/BF01300126 (Mar. 1996).

9. Dor, D. & Zwick, U. Median Selection Requires Comparisons in Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (IEEE Computer Society, USA, 1996), 125.

10. Masson, C., Rim, J. E. & Lee, H. K. DDSketch: A fast and fully-mergeable quantile sketch with
relative-error guarantees. CoRR abs/1908.10693. arXiv: 1908.10693. http://arxiv.org/
abs/1908.10693 (2019).

11. Hung, R. Y. S. & Ting, H. F. An Omega(1/e Log 1/e) Space Lower Bound for Finding e-Approximate
Quantiles in a Data Stream in Proceedings of the 4th International Conference on Frontiers in
Algorithmics (Springer-Verlag, Wuhan, China, 2010), 89–100. ISBN: 3642145523.

12. Manku, G. S., Rajagopalan, S. & Lindsay, B. G. Approximate Medians and Other Quantiles in
One Pass and with Limited Memory. SIGMOD Rec. 27, 426–435. ISSN: 0163-5808. https:
//doi.org/10.1145/276305.276342 (June 1998).

13. Greenwald, M. & Khanna, S. Space-Efficient Online Computation of Quantile Summaries. 30, 58–
66. ISSN: 0163-5808. https://doi.org/10.1145/376284.375670 (May 2001).

14. Shrivastava, N., Buragohain, C., Agrawal, D. & Suri, S. Medians and Beyond: New Aggregation
Techniques for Sensor Networks. CoRR cs.DC/0408039. http://arxiv.org/abs/cs.DC/
0408039 (2004).

15. Karnin, Z., Lang, K. & Liberty, E. Optimal Quantile Approximation in Streams 2016. arXiv: 1603.
05346 [cs.DS].

16. Felber, D. & Ostrovsky, R. A randomized online quantile summary in O(1
ε

log 1
ε
) words 2015. arXiv:

1503.01156 [cs.DS].

17. Ivkin, N., Liberty, E., Lang, K., Karnin, Z. & Braverman, V. Streaming Quantiles Algorithms with
Small Space and Update Time 2019. arXiv: 1907.00236 [cs.DS].

6

http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/s00778-009-0172-z
https://doi.org/10.1145/1028788.1028812
https://doi.org/10.1145/1028788.1028812
https://doi.org/10.1145/3168005
https://api.semanticscholar.org/CorpusID:3162077
https://api.semanticscholar.org/CorpusID:3162077
https://doi.org/10.1007/BF01300126
https://arxiv.org/abs/1908.10693
http://arxiv.org/abs/1908.10693
http://arxiv.org/abs/1908.10693
https://doi.org/10.1145/276305.276342
https://doi.org/10.1145/276305.276342
https://doi.org/10.1145/376284.375670
http://arxiv.org/abs/cs.DC/0408039
http://arxiv.org/abs/cs.DC/0408039
https://arxiv.org/abs/1603.05346
https://arxiv.org/abs/1603.05346
https://arxiv.org/abs/1503.01156
https://arxiv.org/abs/1907.00236

18. Ivkin, N., Yu, Z., Braverman, V. & Jin, X. QPipe: Quantiles Sketch Fully in the Data Plane
in Proceedings of the 15th International Conference on Emerging Networking Experiments And
Technologies (Association for Computing Machinery, Orlando, Florida, 2019), 285–291. ISBN:
9781450369985. https://doi.org/10.1145/3359989.3365433.

19. Gan, E., Ding, J., Tai, K. S., Sharan, V. & Bailis, P. Moment-Based Quantile Sketches for Effi-
cient High Cardinality Aggregation Queries. Proc. VLDB Endow. 11, 1647–1660. ISSN: 2150-8097.
https://doi.org/10.14778/3236187.3236212 (July 2018).

20. Li, K.-H. Reservoir-Sampling Algorithms of Time Complexity O(n(1 + Log(N/n))). ACM Trans.
Math. Softw. 20, 481–493. ISSN: 0098-3500. https://doi.org/10.1145/198429.
198435 (Dec. 1994).

21. Cormode, G., Korn, F., Muthukrishnan, S. & Srivastava, D. Effective computation of biased quan-
tiles over data streams in 21st International Conference on Data Engineering (ICDE’05) (2005),
20–31.

7

https://doi.org/10.1145/3359989.3365433
https://doi.org/10.14778/3236187.3236212
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435

	Introduction
	The quantile problem
	Theoretical results

	Major milestones
	MP-sketch
	New(X) operation
	Collapse(X1, X2, ..., Xc) operation
	Quantile(q) operation
	Algorithms

	Our contribution
	Measures

	Future plans
	References

