Quantile Sketch Algorithms

Levente Birszki

Supervisors:

Gábor rétvári Balázs Vass

Eötvös Loránd University

2024 May 30

Motivation

- Financial Analysis: Quickly estimating value at risk (VaR) and other financial metrics from large volumes of transaction data.
- Network Monitoring: Analyzing latency, bandwidth usage, and other network metrics in real-time.
- Database Systems: Enhancing query performance by maintaining approximate summaries of large tables.

Basic concepts

Definition (sketch)

A sketch S(X) of some data set X with respect to some function f is a compression of X that allows us to compute, or approximately compute f(X) given access only to S(X).

Definition (rank)

Given an x element from the input stream. r(x), the rank of x is the number of elements smaller or equal than x in the sorted input.

Definition (quantile)

The q-quantile for $q \in [0, 1]$ is the element x_q , whose rank is $\lceil qn \rceil$.

Why sketches?

- Scalability: Traditional methods for computing quantiles can be impractical for large datasets due to high computational and storage costs.
- Stream Processing: In many real-time applications, data arrives in streams, and it's crucial to compute quantiles without storing the entire dataset.

Definition (rank error)

An element \tilde{x}_q is an ϵ -approximate q-quantile if $|r(x_q) - r(\tilde{x}_q)| \le \epsilon n$. This also known as rank error.

Former results

Definition (single quantile approximation problem) In the single quantile approximation problem, given an x_1, \ldots, x_n input stream, q, ϵ and δ . Construct a streaming algorithm, which computes an ϵ -approximate q-quantile with probability at least $1 - \delta$.

Publication	Algorithm	Space Complexity	Mergeability	quantile type	
2001	GK-sketch	$O\left(\frac{1}{\epsilon}\log(\epsilon n)\right)$	no	all	
2004	q-digest	$O(\frac{1}{\epsilon} \log u)$	yes	all	
2016	KLL $O(\frac{1}{\epsilon} \log^2 \log \frac{1}{\delta})$		yes	singe	
2016	KLL	$O(\frac{1}{\epsilon}\log^2\log \frac{1}{\delta\epsilon}))$	yes	all	
2017	FO	$O(\frac{1}{\epsilon}\log \frac{1}{\epsilon})$	no	all	
2019	SweepKLL	$O(\frac{1}{\epsilon} \log \log \frac{1}{\delta}))$	no	single	
2019	SweepKLL	$O(\frac{1}{\epsilon} \log \log \frac{1}{\delta \epsilon}))$	no	all	

MRL-sketch framework

b buffers, each can store k elements. each buffer X has a w(X) weight. Three operations:

- New(X): Fills an empty buffer from input, w(X) := 1.
- Collapse (X_1, X_2, \ldots, X_c) :

		23	52	83	114	143]	weig	ght 9.			
Sorte	d See	que	nce	:	. (offse	t =	5)				
12	12		23		23	2	3	33	33	33	44	
44	44		44		52	5	2	64	64	64	64	
72	72		83		83	8	3	94	94	94	94	
102	10:	2	114	1	114	1	14	114	124	124	124	
124	13	2	132	2	143	1.	43	143	153	153	153	
INPUT	:											
	1	12	52	72	102	132		weight 2,				
		23	33	83	143	153		weight 3,				
		44	64	94	114	124		weig	cht 4.			

Quantile Sketch Algorithms Levente Birszki Motivation Basic concepts Error guaranties Former results MRI -sketch framework Our contribution Measurements

• Quantile(q): After collapse, returns $X[q \cdot k]$

Merging policies

Figure: MP-sketch for b = 6 buffers.

Figure: MRL-sketch for b = 5 buffers.

Our contribution

- Improve performance using its own predictions. If we have a suantile sketching algorithm, we can use it, to approximate the CDF.
- The slowest part is to sort the buffers on the first level, so try to improve this. After a sketch was built from scratch, we can build a second one, using the first.
- In every insertion, ask the first sketch what is the rank of that element. Then try to insert it into the buffers corresponding position.
- Then use a sorting algorithm that performs well on nearly sorted data (like insertion sort).

Measurements

Figure: Operation proportions to the runtime of sketches. The original is on the right, the biased is on the left. $n = 10^5$, $\epsilon = 0.001$, b = 6, k = 3125

Measures

Quantile Sketch

Algorithms

- Instead of sorting the buffers, we can use a smarter data structure for insertion, such as a skip list.
- Examine relative error sketching algorithms such as DDSketch, and ReqSketch. Furthermore explore the literature on *some quantile* sketches.

Thank you for your attention!