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1. Introduction and Previous Work

In the first semester of this project I got to know
the Sign-Perturbed Sums (SPS) method introduced by
B. Cs. Csiji, M. C. Campi and E. Weyer in [2]. SPS
is a statistical region-estimation method that constructs
non-asymptotic and distribution-free confidence regions
around a point estimate of the true model parameters.

Initially, the SPS method was applied in the case of lin-
ear regression problems where we can get an exact con-
fidence region around the least-squares (LS) estimate of
the coefficients. Using convex optimization it is also pos-
sible to efficiently create outer approximating ellipsoids,
in order to reduce the computational cost [2].

Last semester I stayed within this topic and worked on
numerical experiments with the SPS method in the case
of least-squares and regularized least-squares problems. I
also implemented the outer approximation algorithm and
transformed the results from the parameter space to the
model space through solving another convex optimization
problem with Lagrangian multipliers.

This semester I chose to move on in the direction of
time series [1] where multiple modifications and general-
izations can be made. From this area I worked with the
ARX model with the help of instrumental variables.

2. Predicting Scalar ARX Systems

2.1. Scalar ARX System Framework

In the ARX model we assume that we have observa-
tions in the following form:
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where Y, € R is the output in ¢ (which is a discrete time
index); U, € R is the input in ¢ that can depend on the
previous inputs; [a], ..., @} , b}, ...,b;z]T € R? is the (con-
stant) true parameter and N, € R is a noise term.

We can reformulate the ARX model using the linear
regression notation system:

Y, = ¢l0" + N,

where ¢; = [Yi-1, ..., Yi—q,, Us—1, ..., U,_dz]T are the regres-
sors, 6% = [a’f, afil s b‘;, b;z]T is the true parameter and
N, is a noise term.

We wish to estimate #* from a finite sample and give
a confidence region around the estimate. The problem
with the original version of SPS is that in this case the
regressors are not exougenous - not independent from the
noise terms - and that was one of the necessary assump-
tions before. The idea is to handle this with the help of
instrumental variables (IVs).

2.2. Instrumental Variables

In the case of endogenous regressors we can introduce
new variables, so called instruments [4] that meet the fol-
lowing two expectations:

e the IVs must be correlated with the regressors

e the I'Vs cannot be correlated with the noise term.

Instrumental variables (notation: {¢,}) can be con-
structed in multiple ways, for instance one can use only
the previous inputs, U;_1, U;—, ... since they can only de-
pend on the other inputs and some independent noise
terms. Another method is to estimate the true system pa-
rameters (e.g. with LS) and generate new noise-free out-
puts with them. During the numerical experiments I will
present both of these methods.

Similarly to LS, we can calculate the IV estimate for an
ARX system by solving a modified normal equation:
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Since the generated IVs will be independent from the
noise but they will be correlated with the original regres-
sors, we can replace our regressors with them and imple-
ment SPS in this setup.

2.3. SPS for ARX Problems

Now I would like to describe how we can apply SPS
method to ARX systems based on [6]. We can assume that
we have data generated by an ARX system as described
above and that we already have access to the IVs we need:
{;}. The additional assumptions we make are:

e {N,} is a sequence of independent random variables
with a symmetric distribution around zero

e detV, # 0as., where V, = 1 3"y, o]

Let us recall the main idea behind SPS method: if our 8
estimate is close enough to the real parameter, 6%, than the
error term between the estimated outputs and the observed
ones should be close to the noise terms, ;. Since N, is
symmetrically distributed, if we perturb the error terms
with different sequences of Rademacher variables ({@;,}
where P(a;; = +1) = %) the probabilities should remain
approximately the same - if 6 is close enough to 6.

Differently from the linear regression case we build the
confidence region around the IV-estimate 0,y because we
would like to perturb equation (1).

Let us say that we aim to construct a confidence region
from n observations with probability p such that we deter-
mine if a given 6 in the parameter space falls within this
region. We shall set m > g > O such that p = 1 — g/m.
Now we need to generate n(m — 1) random signs, {a;,},
so we can perturb the reference sum of errors with them.
From
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we get (m — 1) perturbed sums:
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where H, = 1 3"yl

If we compare the 2-norm of these vectors and exclude
the q largest ones we get a confidence region with the ex-
act probability p. So we accept @ if it is not among the

excluded ones in this order. Note: to make the ordering
well defined we choose between two sums with the same
2-norm based on a random permutation of the indexes.

Rather than deciding about the parameters one by one it
can be easier to build an ellipsoid around the exact region.
Considering a larger set we guarentee that the probability
of the real parameter being in the ellipsoid is greater than
the expected one.
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As in the linear regression case we have to solve m — 1
convex optimization problems and the gth largest value
will be the radius of our ellipsoid around the I'V estimate:
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where A;, b;, ¢; come from {¢,}, (¢}, {Y:}, O and {a;,}.

2.4. A general framework for perturbation based hy-
phothesis testing methods

In [3] a general framework is presented for similar
methods to SPS where we would like to decide if a pa-
rameter is in the given confidence region or not with some
perturbation of the data. The family of the hypothesis test-
ing methods that can be built up based on this framework
called Perturbed Datasets Methods (PDM). Let us intro-
duce the notation D := {X;, Y;}Vi = 1,...,n. The general
steps of these algorithms are the followings:

1. Generate m different datasets: D'(D, ) based on a
random data perturbation setup I"

2. Define a performance measure of 6: Z and calculate
it for the generated models: Z;

3. Give a well defined ordering of the values Z;

4. Define the subset of the m! possible orderings over
which 6 is accepted.

If the generated datasets are conditionally independent for
some o-algebra and in the case of = 6" they are iden-
tically distributed then it is true for Z;s too. Because of
this every ordering has the same probability: %, so it is
indeed possible to define an exact confidence region by
selecting a subset of the orderings.



It is easy to see that SPS method is a part of this family.
The random perturbation setup I" is given by the m — 1
random sign sequences as follows:

W, =1d,
W; = diag(a;),

fori = 2,...,m. From these we can generate the perturbed
datasets: D(D, ) = W;N(6), where N(0) is the noise term.
In the case of # = 6" the symmetric distribution of the
noise guarantes the i.i.d.-ness of the perturbed datasets
Di(D,#). The performance measure is some weighted
norms in both the linear regression and the ARX case and
the ordering is as described above.

2.5. PEM for ARX systems with exchangeable noise

Now let us take another problem: replace the assump-
tion about the symmetry of the noise with exchangebility.
This means that we can take any permutation of the noise
sequence and the joint distribution stays the same.

For this reason we can define I as a sequence of permu-
tation matrices P, ..., P,,, such that P; = Id and the oth-
ers represent m — 1 random permutations. The perturbed
datasets will be DY(D,6) = P;N(#) and the performance
measure will be a weighted distance between 6 and the
LS or IV estimate corresponding to D(D, #). The order-
ing stays the same as above.

It is straightforward to translate the SPS outer approx-
imation problem to the framework of PDM and from that
we get very similar convex optimization problems for the
permutation version, PEM, too: instead of the {W;} matri-
ces we use {P;} to formulate the optimization problem.

3. Modifying SPS for Multivariate ARX Systems

Another generalization direction is considering not
only scalar but vector valued ARX systems. Henceforth,
I will look at a simple version of this problem where the
output at time ¢ only depends on the previous one, one
input and a noise term. We can describe this model as:

Y, =AY, + BU;_1 + N,,

fori=1,...,n, where ¥, and N, € R%, U, € R%, The real
parameters are now matrices: A € R*% B e R4

It would be possible to reformulate each step of this
system as a linear regression problem so that we could
apply the previous methods on this vectorized form. But
it would result in big and complex equation systems and
would be hard to generalize to systems with more steps.

So an alternative way is to interpret the problem as a
matrix-variate linear regression system as:

Y = 00" + N,
where all the participants are matrices:
v=[vl,..v!]
® = [#]. 0l with g, = [¥7 U7 T,
o =[a”. 57|,
N=[N. N

I will describe the modification of SPS to this problem
(MIV-SPS) based on [5]. Firstly, some mild assumptions
we need to make:

o The row vectors of N are independent and symmet-
rically distributed around zero

e Let the random matrix ¥ be the matrix containing
the instrumental variables as rows, so ¥ and N are
independent; then W7 @ is full rank almost surely.

The IV estimate we will use comes from a very similar
equation as in the scalar case:

¥y - 00) = 0,

from which:
O = ¥To) vy

Now, we can use {W;} defined in 2.4 and generate the per-
turbed datasets and measure:

1
So(@) = —H;'”¥T (Y — ©O)
n
1
5/0) = —H,"*¥TW,(Y - ®O),
n
where H,, = %‘PT‘P. Since we get matrices from these cal-

culations we compare them in Frobenius-norm with ran-
dom tie-breaking and decide about ® as previously.



3.1. Outer approximation for MIV-SPS

Similarly as in the scalar case we are looking for an
outer approximating ellipsoid in the following form:

{©: |H,?V,(@ - 0l < r).

Again we can find the radius by solving m — 1 convex
optimization problem defined by @, ¥, ¥, ®;, and W;.

4. Numerical Experiments

4.1. Comparing Different Methods of Generating Instru-
mental Variables for Scalar ARX system

I would like to note that the methods described above
are general enough to apply them on closed-loop systems
as well but during this semester I only worked with open-
loop ARX systems. For the experiments detailed futher
I used the Python programming language and packages
Numpy, CVXPy and Matplotlib.

In this first segment I would like to compare two ways
of generating instrumental variables for a scalar problem
in the following form:

Yt = G*Yt71 +b*Ut71 +Nt
U =cU_ 1 +V,,

where we aim to estimate the real parameters 8* = [a*, b*]
and give confidence intervals around them. For using SPS
method we need the IV estimate but how can we get the
IVs for that?

The first option I experimented with was using the least
squares estimate of 6%, build the predicted noise-free out-
puts with & and replace the original outputs in the regres-
sors with this ¥:

Y = [? 1 Utl.

The second version is more simple because it does not
require us to calculate the least squares estimate, we just
use the previous inputs:

U = [Ui-1, Uyl

In the folllowings I generated an n—long trajectory from
the ARX system with a* = 0.7,b* = 1,¢* = 0.75, N as
ii.d. Gaussian and V as i.i.d. Laplacian noise. I imple-
mented the outer approximation and stored the length of
the confidence intervals given to the next, n + 1-th step
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Figure 1: Lengths of the confidence intervals given by IV} and IV, for
n = 100,200

by the two methods, IV, and IV,. The figures below
show the histogram of the results after 500 repeats, for
n = 100 and 200. We can see that as we increase the size
of the training data, the tails of the confidence interval
lengths distribution becomes less heavy in both methods.
However, IV, tends to be better which is not unexpected
since we use the LS estimate in that method.

It is also interesting to take a look at the confidence re-
gion in the parameter space while increasing the sample
size.In the figure below we can see an illustration of the
outer approximated confidence regions in the parameter
space. In this experiment I trained the model on a growing
part of the series, from 100, 130, 160, 190,220 and 250
outputs.



Confidence ellipsoids given by IV_1 and IV_2
for n=130,160,190,220,250
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Figure 2: Confidence ellipsoids of /V; and IV, in the parameter space
with increasing sample size

Again, in line with the previous results, we can see that
the first model performs better. But is it also noticeable
that for both models the size of the ellipses decreases with
increasing sample size, as expected.

4.2. Comparing SPS and PEM on ARX system

In 2.5 PEM is described as a method that uses the per-
mutations of the noise sequence to generate perturbed
datasets. It can be used in the case of an exchangeable
noise sequence and does not require the noise distribution
to be symmetric. In order to compare this method with
SPS we can look at a case when both of these conditions
are met: let the noise, {N;} be an i.i.d. sequence of vari-
ables from Gaussian distribution.
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Figure 3: Lengths of SPS and PEM confidence intervals given for n=200

For the IV generation I used the first method, /V; and
the IV-estimate we get from that to build the confidence
interval around. After translating the outer approximation
problem to the general framework with the W; and P; ma-
trices I stored the lengths of the confidence intervals for
the next observation after 200 steps. The histogram of
these lengths are illustrated in Figure 3 after 500 repeats.

Examining the confidence ellipsoids in the parameter
space we can notice that since we used the same IVs in
both methods, the only difference will be the radius of the
ellipsoids but the shape of the two will be the same in
each step. In Figure 4 we can see an example where SPS
stays better in each step but I would like to notice that
during the experiments it occurred several times that even
though PEM gave wider regions for smaller sample sizes
it became better than SPS as the size increased.

Confidence ellipsoids given by SPS and PE methods
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Figure 4: Confidence ellipsoids of SPS and PEM in the parameter space
with increasing sample size

5. Summary and future work

During this semester [ examined both scalar and vector-
variate ARX system problems and different directions
of generalizing SPS method for these cases. I experi-
mented with different methods of generating instrumen-
tal variables and how well they worked compared to each
other. Using the general framework of Perturbed Datasets
Method I implemented PEM for systems with exchange-
able noise sequence and compared it with SPS in the case
of i.i.d. Gaussian noise. I also implemented the MIV-SPS
method and I am planning to work on this further in the
future as well as examine closed-loop systems.
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