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Problem Setting from Last Semester

Consider a linear regression system:

ϕT1 θ
∗ + N1 = Y1

ϕT2 θ
∗ + N2 = Y2

...

ϕTn θ
∗ + Nn = Yn

 ΦT θ∗ + N = Y

The Least-Squares Estimate (LSE) of θ∗:

θ̂ = (ΦTΦ)−1ΦTY

We aim to build non-asymptotic distribution-free confidence regions
around the point estimate
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Main Idea of SPS[1]

Find θ̂, the root of the normal equation:

0 =
n∑

t=1

ϕt(Yt − ϕTt θ) =
n∑

t=1

ϕtϕ
T
t (θ

∗ − θ) +
n∑

t=1

ϕtNt = H0(θ)

Perturb the signs of the prediction errors:

Hi (θ) =
n∑

t=1

αi ,tϕtϕ
T
t (θ

∗ − θ) +
n∑

t=1

αi ,tϕtNt

Order them in some measure and define a subset over which θ is
accepted

Remark

If θ is ”close” to θ∗, the prediction error is ”close” to the noise term so
with symmetrically distributed noise the perturbed ones’ distribution
should remain the same.
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Outer Approximation

To get regions that are easier to calculate: ellipsoidal outer
approximation
It leads to m − 1 convex minimization problem and the qth largest
optimum gives the proper radius of the ellipsoid in the parameter
space (p = 1− m

q )

[1]
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Generalization of SPS

Assumptions we would like to relax:

exogenous regressors
(independent from the noise terms)

⇐⇒ endogenous regressors

symmetrically distributed noise ⇐⇒ exchangeable noise

scalar valued data ⇐⇒ vector valued data
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Scalar ARX Systems and Instrumental Variables

Scalar ARX problem:

Yt =

d1∑
i=1

a∗i Yt−i +

d2∑
i=1

b∗i Ut−i + Nt ⇐⇒ Yt = ΦT
t θ

∗ + Nt

To handle the endogenous regressors - instrumental variables (ψt):
1 must be correlated with the regressors
2 cannot be correlated with the noise terms

How to generate IVs:
1 use only previous inputs (ψt = [Ut−1,Ut ])
2 with least-squares estimation (ψt = [Ŷt ,Ut ])

The IV-estimate:
θ̂IV = (ΨTΦ)−1ΨTY
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IV-SPS for ARX Systems [4]
endogenous regressors, symmetrically distributed noise, scalar valued data

Find θ̂IV , the root of the normal equation:

0 =
n∑

t=1

ψt(Yt − ϕTt θ) =
n∑

t=1

ψtϕ
T
t (θ

∗ − θ) +
n∑

t=1

ψtNt = H0(θ)

Perturb the signs of the prediction errors:

Hi (θ) =
n∑

t=1

αi ,tψtϕ
T
t (θ

∗ − θ) +
n∑

t=1

αi ,tψtNt

Order them in some measure and define a subset over which θ is
accepted
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Performance of Different IV-Generating Methods

Yt = a∗Yt−1 + b∗Ut−1 + Nt

Ut = c∗Ut−1 + Vt ,

a∗ = 0.75
b∗ = 1

c∗ = 0.75
p = 0.9
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IV-PEM for ARX Systems[2]
endogenous regressors, exchangeable noise, scalar valued data

Find θ̂IV , the root of the normal equation:

0 =
n∑

t=1

ψt(Yt − ϕTt θ) =
n∑

t=1

ψtϕ
T
t (θ

∗ − θ) +
n∑

t=1

ψtNt = H0(θ)

Permute the signs of the prediction errors:

Hi (θ) = Pi

n∑
t=1

ψtϕ
T
t (θ

∗ − θ) + Pi

n∑
t=1

ψtNt ,

where Pi is a random permutation matrix

Order them in some measure and define a subset over which θ is
accepted
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Performance of SPS and PEM with i.i.d. Noise

Yt = a∗Yt−1 + b∗Ut−1 + Nt

Ut = c∗Ut−1 + Vt ,

a∗ = 0.75
b∗ = 1

c∗ = 0.75
p = 0.9
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Vector Valued ARX Systems and Instrumental Variables

Vector valued ARX problem
(Yt ,Ut ,Nt are vectors, A∗,B∗ are matrices):

Yt =

d1∑
i=1

A∗
i Yt−i +

d2∑
i=1

B∗
i Ut−i + Nt ⇐⇒ Y = ΦΘ∗ + N

The IV-estimate:
Θ̂IV = (ΨTΦ)−1ΨTY ,

matrix valued!
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MIV-SPS [3]
endogenous regressors, symmetrically distributed noise, vector valued data

Find Θ̂IV , the root of the normal equation:

0 = ΨT (Y − ΦΘ) = ΨTΦ(Θ∗ −Θ) + ΨTN = H0(Θ)

Perturb the signs of the prediction errors:

Hi (Θ) = ΨTWiΦ(Θ
∗ −Θ) + ΨTWiN,

where Wi = diag(αi )

Order them in some measure (Frobenius-norm) and define a subset
over which Θ is accepted
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Thank You for Your Attention!
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