
Coupled task scheduling

Anna Markó

Supervisor: Györgyi Péter

2023. május 15.

1 Introduction

During the semester, I continued to study the version of coupled task scheduling prob-

lem where the value of L is constant, focusing on the objective function
∑

Cj. My

goal was to handle inputs consisting of as many jobs as possible. I based my work

on the algorithm published last year by David Fisher and Péter Györgyi[1], and then

attempted to improve it using various methods. To test these improvements, I used

Python.

The algorithm first sorts the jobs in non-decreasing order of aj + bj, and then

greedily schedules them in this order.

Algorithm 1:

Input : (aj, bj) j = 1 . . . n, L
Output: (sj)

n
j=1 j = 1 . . . n

1 Sort the jobs in non-decreasing order of aj + bj;
2 s1 := 0;
3 for j = 2 . . . n do
4 if aj can be scheduled immediately after aj−1 without overlapping into the

processing time of other tasks then
5 Schedule it this way;
6 sj := sj−1 + aj−1

7 else
8 if bj can be scheduled immediately after bj−1 without overlapping into

the processing time of other tasks then
9 Schedule it this way;

10 sj := sj−1 + aj−1 + bj−1 − aj
11 else
12 Start aj immediately after bj−1;
13 sj := sj−1 + aj−1 + bj−1 + L;

The algorithm can be reliably characterized as a 3-approximation. However, based

on my observations from the previous semester, it performs significantly better in

1

practice. Unfortunately, I was only able to test it on inputs consisting of a maximum

of 10 jobs due to limitations of the IP solver. The approximation algorithm swiftly

schedules even large inputs, allowing me to compare the improved results with those

generated by the algorithm itself.

2 Improvement by rearranging blocks

In a given schedule, blocks are formed by jobs whose starting times immediately follow

each other (there are no task outside the block), and for any two directly following jobs,

the later scheduled job starts before the earlier one would have finished. A scheduling

arranges jobs into blocks. I examined the optimal scheduling of given blocks.

Each block can be described by three characteristics. Let Bn
j denote the number

of jobs in the jth block, Bl
j represents the length of the block (the time elapsed from

the start of the first job in the block to the completion of the last job in the block),

and Bw
j indicates the sum of elapsed times between the completion of the jobs within

the block and the start of the block.

Lemma 1. Let B = (B1, . . . , Bm) denote a set of blocks. Schedule them in non-

decreasing order of
Bn

j

Bl
j

. This schedule is optimal.

Proof. Suppose there exists an optimal block sequence where Bi is scheduled before

Bj, and
Bn

j

Bl
j

>
Bn

i

Bl
i

. Then, there exist two adjacent blocks B′
i and B′

j such that B′
i is

scheduled before B′
j, and

Bn
j′

Bl
j′
>

Bn
i′

Bl
i′
. Let’s exchange these two blocks and observe how

the objective function changes. The completion times of the jobs in the other blocks

remain unchanged, so we only need to consider the changes in the completion times

of the jobs in Bi′ and Bj′ . In the original order, this is Bw
i′ +Bl

i′B
n
j′ +Bw

j′ , while after

the swap, it becomes Bw
i′ +Bl

j′B
n
i′ +Bw

j′ .

Bn
j′

Bl
j′
>

Bn
i′

Bl
i′

=⇒ Bw
i′ +Bl

i′B
n
j′ +Bw

j′ > Bw
i′ +Bl

j′B
n
i′ +Bw

j′

This contradicts the optimality of the order.

Let’s assume there are k blocks in a schedule. The objective function can be

described using the characteristics of the blocks:

k∑
i=1

Cj =
k∑

i=1

(
Bw

i +Bn
i

i−1∑
j=1

Bl
j

)
.

The value of
∑k

i=1 B
w
i is constant. The scheduling of the blocks can be interpreted

as the 1||wjSj problem, where Sj =
∑j−1

i=1 B
l
j and wj = Bn

j for all j. Therefore, the

start times of the blocks are weighted by the number of jobs in the blocks.

2

This method alone did not prove to be useful. I tested it on inputs consisting of

100 jobs with different values of L, but unfortunately, it did not improve by even half

a percent on average. Nevertheless, I continued to use it in further analysis, as it runs

in linear time with respect to the number of jobs.

The result provided by the algorithm is denoted as Calg, while the result improved

by rearranging blocks is denoted by Cbl.

L 50 40 30 20 10
Cbl/Calg 0.9984 0.9975 0.9964 0.9957 0.9951

Table 1

3 Local search

The local search is a heuristic method frequently utilized for solving NP-hard problems.

The algorithm traverses the solution space according to specific operators until it

reaches a local minimum or reaches the maximum iteration count. I introduced two

simple operators: the interchange and the shift operator. The former moves into a

new solution by swapping two jobs in the scheduling sequence, while the latter shifts

a job within the sequence.

(a) Initial schedule (b) 1. step

(c) 2. step (d) 3. step

Figure 1: Local search with interchange operator

3

(a) Initial schedule (b) 1. step

(c) 2. step

Figure 2: Local search with shift operator

In the first case, I used only one operator during each run. The operators were op-

erated according to the previous figures. In one step, the operator performed the

sequence rearrangement, and then evaluated the given sequence using the greedy

scheduling employed in the approximation algorithm. I tested the two operators on

20 different inputs consisting of 50 jobs each. The values of aj and bj were randomly

generated between 1 and 10, while L was set to 50. Initially, the values were sorted in

non-decreasing order of aj + bj. The interchange operator performed slightly better,

although not significantly. I denoted the results obtained using the shift operator as

Cshift, and those obtained using the interchange operator as Cich.

4

10 20 30 40 50

0.87

0.875

0.88

0.885

0.89

0.895

0.8777

0.8882

L

Cich/Calg

Cshift/Calg

Average improvement with the interchange operator
Average improvement with the shift operator

Figure 3: Improvement using local search with a single operator at a time

In the next case, I slightly modified the operation of the operators. In one step,

they made a swap/shift in the sequence, evaluated it greedily, and then arranged the

blocks in the optimal order. This resulted in a much larger change in the sequence

of jobs in one step compared to the previous method. I tested the two operators on

the same inputs as before. Here, too, I found that the interchange operator performed

better. Overall, this method brought a slight improvement compared to the previous

one. I denoted the result provided by the modified interchange operator as Cich′ and

the result provided by the modified shift operator as Cshift′ .

5

10 20 30 40 50
0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.8716

0.8763

L

Cich′/Calg

Cshift′/Calg

Average improvement with the modified interchange operator
Average improvement with the modified shift operator

Figure 4: Improvement using local search with a single modified operator at a time

A characteristic improvement to local search is to alternate between using the

operators. We continue improving with one operator until reaching a local minimum,

then switch to the other operator. This process continues until neither operator can

make further improvements.

Algorithm 2: Local search with alternating use of operators

Input : (aj, bj) j = 1 . . . n, L
Output: (sj)

n
j=1 j = 1 . . . n

1 while Schedule can be improved do
2 while The interchange operator improves the schedule do
3 Apply the interchange operator;

4 while The shift operator improves the schedule do
5 Apply the shift operator;

6 return best solution

Since the modified operators performed better individually, I continued to use them

in this method as well.

The performance of local search heavily depends on how the jobs are ordered in

the input. I tested my program on the same tasks with different job orders. Generally,

the approximation algorithm performs much better than local search starting from a

6

random order. Improvement was only observed for those orders where the input was

sorted in non-decreasing order by aj+bj or bj, with aj+bj proving to be more effective.

L 50 40 30 20 10

C 0.865 0.868 0.861 0.867 0.850

Table 2

I attempted to further improve the local search using tabu search. The essence

of tabu search is that if no improving move is available, we allow a worsening move.

However, this rule could easily lead us back to the same solution. To avoid this, we

record a predefined number of the most recently evaluated states.

Algorithm 3: Local search with tabu search

Input : (aj, bj) j = 1 . . . n, L, tabu size, max iter
Output: (sj)

n
j=1 j = 1 . . . n

1 Initialize current solution, task list, and order;
2 Initialize tabu list as an empty queue with a maximum size of tabu size;
3 iter count← 0;

4 while iter count < max iter do
5 iter count← iter count + 1;
6 Initialize best solution, task list, and order to current solution, task list,

and order;

7 for operator ∈ {interchange, shift} do
8 Apply operator to obtain new solution, task list, and order;
9 if improvement found and move not in tabu list then

10 Update best solution, task list, and order;

11 if improvement found then
12 Update current solution, task list, and order with best move;
13 Add best move to tabu list;
14 if tabu list exceeds tabu size then
15 Remove the oldest move from tabu list;

16 else
17 Apply a random operator to get a new solution, task list, and order;
18 Add the new move to tabu list;
19 if tabu list exceeds tabu size then
20 Remove the oldest move from tabu list;

21 return best solution

In the case of tabu search, I also employed the modified operators. Unfortunately,

compared to the previous results, I observed only very negligible improvement, typi-

cally around 0.1-0.2 percent, while the execution time significantly increased. Thus,

7

for now, local search with alternating use of operators proved to be the most effective

approach.

My assumption is that further improvement would require a new evaluation algo-

rithm. The greedy algorithm fails to handle cases where it’s beneficial to delay a job

in order to schedule another job efficiently within the same block. Therefore, the next

goal is to find new evaluation algorithms that can schedule jobs once the order is given.

References

[1] D. Fischer, P. Györgyi: Approximation algorithms for coupled task scheduling

minimizing the sum of completion times Ann. Oper. Res. 328(2): 1387-1408

(2023)

8

