Coupled task scheduling

Anna Markó

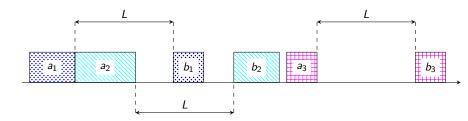
Supervisor: Péter Györgyi

May 29, 2024

Anna Markó Coupled task scheduling

Introduction

- Input: $(a_j, L, b_j)^n$
- Output: (s_1, \ldots, s_n)
- Objective function $\sum_{j=1}^{n} C_j$



→ < ∃ →</p>

- Handle inputs consisting of as many jobs as possible
- Improve the 3-approximation algorithm

→ < ∃ →</p>

Approximation algorithm

Algorithm 1: **Input** : (a_i, b_j) j = 1 ... n, L**Output:** $(s_j)_{j=1}^n \quad j = 1 \dots n$ 1 Sort the jobs in non-decreasing order of $a_i + b_i$; **2** $s_1 := 0;$ **3** for i = 2...n do if a_i can be scheduled immediately after a_{i-1} without overlapping into the 4 processing time of other tasks then Schedule it this way; 5 $s_i := s_{i-1} + a_{i-1}$ 6 else 7 if b_i can be scheduled immediately after b_{i-1} without overlapping into 8 the processing time of other tasks then Schedule it this way: 9 $s_i := s_{i-1} + a_{i-1} + b_{i-1} - a_i$ 10 else 11 Start a_i immediately after b_{i-1} ; 12 $s_i := s_{i-1} + a_{i-1} + b_{i-1} + L;$ 13

< ロ > < 同 > < 三 > < 三 >

Improvement by rearranging blocks

• Blocks are formed by jobs whose starting times immediately follow each other

$$\sum_{i=1}^{k} C_{j} = \sum_{i=1}^{k} \left(B_{i}^{w} + B_{i}^{n} \sum_{j=1}^{i-1} B_{j}^{l} \right)$$

Lemma

Let $B = (B_1, ..., B_m)$ denote a set of blocks. Schedule them in non-decreasing order of $\frac{B_j^n}{B_j^l}$. This schedule is optimal.

Local search

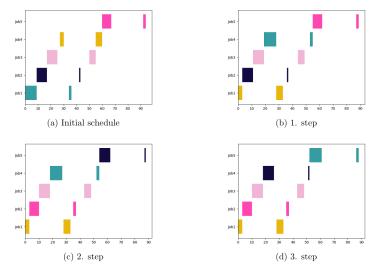
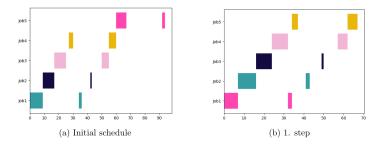


Figure 1: Local search with interchange operator

| 4 回 🕨 🛪 臣 🕨 🛪 臣 🕨

æ

Local search



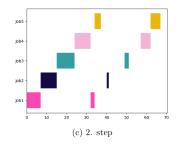
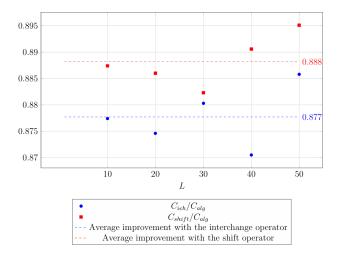


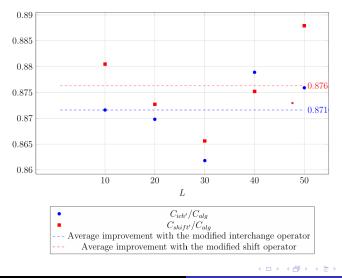
Figure 2: Local search with shift operator

-

Improvement using local search with a single operator at a time



Improvement using local search with a single modified operator at a time



 Algorithm 2: Local search with alternating use of operators

 Input : (a_j, b_j) $j = 1 \dots n$, L

 Output: $(s_j)_{j=1}^n$ $j = 1 \dots n$

 1 while Schedule can be improved do

 2
 while The interchange operator improves the schedule do

 3
 \lfloor Apply the interchange operator;

 4
 while The shift operator improves the schedule do

 5
 \lfloor Apply the shift operator;

6 return best_solution

L	50	40	30	20	10
C	0.865	0.868	0.861	0.867	0.850

Table:

Local search with tabu search

Algorithm 3: Local search with tabu search **Input** : (a_i, b_i) $j = 1 \dots n$, L, tabu_size, max_iter **Output:** $(s_i)_{i=1}^n \quad j = 1 \dots n$ 1 Initialize current solution, task list, and order: 2 Initialize tabu list as an empty queue with a maximum size of tabu_size; **3** iter_count $\leftarrow 0$: 4 while iter count < max iter do</p> iter_count \leftarrow iter_count + 1; 5 Initialize best solution, task list, and order to current solution, task list, 6 and order; **for** $operator \in \{interchange, shift\}$ **do** 7 Apply operator to obtain new solution, task list, and order; 8 if improvement found and move not in tabu list then 9 Update best solution, task list, and order; 10 if improvement found then 11 Update current solution, task list, and order with best move; 12 Add best move to tabu list. 13 if tabu list exceeds tabu_size then 14 Remove the oldest move from tabu list; 15 else 16 17 Apply a random operator to get a new solution, task list, and order; Add the new move to tabu list: 18 19 if tahy list exceeds taby size then 20 Remove the oldest move from tabu list;

 $_{21}$ return best_solution

- Local search with alternating use of operators proved to be the most effective approach
- My assumption is that further improvement would require a new evaluation algorithm