
Matroid parameters for fixed-parameter tractability

Sarolta Oláh
Supervisor: Kristóf Bérczi

May 19, 2024

1 Introduction

This semester I studied matroid parameters, which are essential tools in the design of parameterized
algorithms.

Fixed-parameter tractability focuses on specific parameters to handle computationally hard problems. It
enables the development of efficient algorithms, with running time which is exponential only in the size
of a fixed parameter while polynomial in the size of the input.

This initiated research into practical parameters for combinatorial optimization. Among the various
graph parameters are tree-width and tree-depth. Tree-width measures how close a graph is to being a tree,
allowing many NP-hard problems, like the traveling salesman problem and vertex cover, to be solved in
polynomial time on graphs with bounded tree-width using dynamic programming. Tree-depth measures
how close a graph is to being a star, defined as the minimum height of a rooted forest whose closure
contains the graph. Similarly, many hard problems become polynomial with bounded tree-depth, such as
the mixed Chinese postman problem.

As for many graph attributes, a natural idea is to try and generalize these types of parameters to the field
of matroids. The generalization is not that simple, since these definitions include vertices, which concepts
cannot be generalized into matroids. A perception to overcome this problem was to create a definition for
parameters using only the notion of connectivity-functions. The obtained parameters are in 3.

2 Basics of matroids and connectivity functions

The notion of matroid was introduced by Hassler Whitney in 1933. There are many ways to define a
matroid axiomatically, the following definition contains the independence axioms. A matroid is given by
a pair (𝑆, F ), where 𝑆 is a set of elements, the so-called ground-set, and F contains certain subsets of
𝑆. These subsets should satisfy the next three axioms.

Definition 2.1. A set-system 𝑀 = (𝑆, F ) is called a matroid if it satisfies the following properties, called
independence axioms.

• ∅ ∈ F .

• If 𝑋 ⊆ 𝑌 ∈ F , then 𝑋 ∈ F .

• For every subset 𝑋 ⊆ 𝑆, the maximal subsets of 𝑋 which are in F have the same cardinality.
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The members of F are called independent, the other subsets of 𝑆 are called dependent. The maximal
independent subsets of 𝑆 are the basis, and the minimal dependent sets are called circuits.

The rank of 𝑋 , where 𝑋 ⊆ 𝑆 denoted by 𝑟 (𝑋) is the size of the maximal independent set in 𝑋 , here 𝑟

is the rank-function and 𝑟 (𝑆) is the rank of the matroid. An element 𝑠, which has 𝑟 ({𝑠}) = 0 is a loop,
and an element 𝑠 such that 𝑟 (𝑀 \ {𝑠}) = 𝑟 (𝑀) − 1 is a bridge. The connected components of a matroid
are inclusion-wise maximal sets, that for every two element of a component there exists a circuit which
contains them.

The dual of a matroid 𝑀 , signed by 𝑀∗, is defined on 𝑆 and the bases of 𝑀∗ are the complements of the
bases of 𝑀 .

The two most important matroid operations are deletion and contraction. For a set 𝑍 ⊆ 𝑆, 𝑀 \ 𝑍 means
the deletion of 𝑍 from the matroid. This way we get a new matroid with ground-set 𝑆 \ 𝑍 , a set is
independent here if and only if it is independent in 𝑀 . 𝑀/𝑍 means the contraction of 𝑍 , the matroid
obtained from this has ground-set 𝑆 \ 𝑍 and a set 𝑍 ′ is independent here, if 𝑟 (𝑍 ∪ 𝑍 ′) = 𝑟 (𝑍) + 𝑟 (𝑍 ′),
and 𝑍 ′ is independent in 𝑀 . A matroid obtained by deletions and contractions is called a minor.

The two most notable matroids are called vector or linear matroids, and graphic or circuit matroid. A
vector matroid is where 𝑆 is defined to be a finite set of vectors over an arbitrary field F, F contains the
linear independent subsets of 𝑆. A matroid is representable over a finite field 𝐹, if there exists a vector
matroid isomorphic to it. A graphic matroid is defined as follows. Let 𝑆 be the edge-set of an undirected
graph, and let F contain the subsets of edges, that contains no circuit. The independent sets form trees
and forests in the graph.

Let 𝑆 be a finite set of elements. The next definition describes connectivity functions.

Definition 2.2. 𝜆 : 2𝑆 → Z is a connectivity function if it satisfies the following three properties.

• 𝜆(∅) = 0,

• 𝜆(𝑋) = 𝜆(𝑆 \ 𝑋) ∀𝑋 ⊆ 𝑆, symmetry,

• 𝜆(𝑋) + 𝜆(𝑌 ) ≥ 𝜆(𝑋 ∩ 𝑌 ) + 𝜆(𝑋 ∪ 𝑌 ) ∀𝑋,𝑌 ⊆ 𝑆, submodularity.

For a graph, the following is a connectivity function. For 𝐺 = (𝑉, 𝐸), for 𝑋 ⊆ 𝐸 , 𝜆𝐺 (𝑋) is the number
of vertices, which have edges from both 𝑋 and 𝐸 \ 𝑋 sets.

For a matroid 𝑀 = (𝑆, F ), a connectivity function 𝜆𝑀 : 2𝑆 → Z is defined as 𝜆𝑀 (𝑋) = 𝑟𝑀 (𝑋) + 𝑟𝑀 (𝑆 \
𝑋) − 𝑟𝑀 (𝑆), for all 𝑋 ⊆ 𝑆, where 𝑟 is the rank-function of 𝑀 .

3 The parameters

For the analogue of tree-width, Robertson and Seymour [13] introduced the branch-width parameter and
demonstrated that its tied to tree-width for graphs. Geelen, Gerards, and Whittle [6] extended the study of
branch-width to matroids. Branch-width became a crucial parameter partly because Hliněnỳ [7] proved
that any property definable in the monadic second-order logic of matroids can be tested in polynomial
time for matroids represented over a fixed finite field with bounded branch-width.

Definition 3.1. A branch-decomposition of 𝐻 (where H can be an edge set of a graph, hypergraph, the
domain of a function or a matroid) is a (𝑇, 𝐿) pair, where 𝑇 is a sub-cubic tree (all nodes have at most
3 neighbours), and 𝐿 is a bĳection between the elements of 𝐻, and the leaves of 𝑇 . (𝑇, 𝐿) is a partial
branch-decomposition if 𝐿 is only surjective.
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An edge 𝑒 ∈ 𝑇 , splits it into two connected components. This gives a partition (𝐸1, 𝐸2) in 𝐻. Using this,
we can specify the width of the decomposition, along with the branch-width.

Definition 3.2. For a connectivity function 𝜆 the width of an edge 𝑒 is 𝜆(𝐸1) = 𝜆(𝐸2), where (𝐸1, 𝐸2) is
the partition induced by 𝑒. For a graph 𝐺 = (𝑉, 𝐸) it is 𝜆𝐺 (𝐸1) = 𝜆𝐺 (𝐸2), where 𝜆𝐺 is the connectivity
function of 𝐺. For a matroid 𝑀 , it is 𝜔𝑇 (𝑒) = 𝜆𝑀 (𝐸1) + 1 = 𝜆𝑀 (𝐸2) + 1, where 𝜆𝑀 is the connectivity
function of matroids.

Definition 3.3. The width of T, if T is a branch-decomposition, is the maximum edge-width for all 𝑒 ∈ 𝑇 .
Branch-width is the minimum width over all branch-decompositions. Its notation for graphs, matroids
and connectivity-functions is bw(𝐺), bw(𝑀) and bw(𝜆), respectively. 𝑇 is tight, if there is no other
branch-decomposition with less branch-width.

Figure 1: Example of a branch-decomposition. The graph on the left is viewed as a cycle matroid, the
right picture shows an optimal branch-decomposition with bw(𝑀) = 3.

Computing branch-width is NP-hard, but, it was shown by Hliněnỳ [8] with an algorithm, that for
matroids, represented over a fixed finite field, branch-width is fix-parameter tractable. Sang-il Oum and
Paul Seymour [10] created a 3-approximating algorithm for creating branch-decompositions and in [5]
Fomin and Korhonen made a 2-approximating one for the same problem.

Many researchers defined parameters to generalize tree-depth. The notion branch-depth as a gener-
alization, was introduced by DeVos Kwon and Oum [4]. Their definition produced various parameters,
such as rank-depth of a graph, by substituting different kinds of connectivity-functions.

The branch-depth of a matroid is the same as the branch-depth of its connectivity function. The definition
is the following.

Definition 3.4. Let 𝑆 be a finite set of elements. A depth-decomposition of a connectivity function
𝜆 : 2𝑆 → Z is a (𝑇, 𝐿) pair, where 𝑇 is a tree with at least one internal node, which is a node that has
child nodes.

The radius of a (𝑇, 𝐿) decomposition is the radius of the tree 𝑇 . It is the smallest number 𝑟 , so there
exists a node with distance at most 𝑟 from every node.

Definition 3.5. Let (𝑇, 𝐿) be a decomposition of a connectivity function 𝜆. For an internal node 𝑣 ∈ 𝑉 (𝑇),
the connected components of the graph 𝑇 \ {𝑣} give a partition P𝑣 on 𝐸 by 𝐿. The width of 𝑣 is defined
to be 𝜆(P𝑣), where 𝜆(P𝑣) = maxP⊆P𝑣

𝜆𝑀

(⋃
𝑋∈P 𝑋

)
. The width of the decomposition (𝑇, 𝐿) is the

maximum width of an internal node of 𝑇 . We say that a decomposition (𝑇, 𝐿) is a (𝑘, 𝑟)-decomposition
of 𝜆 if the width is at most 𝑘 and the radius is at most 𝑟 . The branch-depth of 𝜆, denoted by bd(𝜆), is the
minimum 𝑘 such that there exists a (𝑘, 𝑘)-decomposition of 𝜆.

Figure 1 is also an excellent example of branch-depth. Since the root has distance at most 3 from every
edge and every nodewidth is at most 2, it is a (3, 3)-decomposition.
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The same computational properties go for branch-depth as for branch-width, because of a connection
between them. If a matroid has bounded branch-depth, it has bounded branch-width, hence the fpt
algorithm for branch-width can be used for computing branch-depth, with a little modification [4].

Other depth parameters are contraction-depth, deletion-depth and contraction-deletion-depth. The first
two notions were first researched by Robertson and Seymour under the names C-type and D-type [12].
Similarly, contraction-deletion-depth was investigated by, Ding Oporowski and Oxley with the name type.
These names were given by DeVos, Kwon and Oum [4].

Definition 3.6.

• If 𝐸 (𝑀) = ∅, then dd(𝑀) = cd(𝑀) = cdd(𝑀) = 0.
• If M is not connected, then dd(𝑀), cd(𝑀), cdd(𝑀) is the maximum respective depth of the

matroid’s components.
• If 𝑀 is connected, and 𝐸 (𝑀) ≠ ∅, then:

– dd(𝑀) = 1 + min𝑒∈𝑀 {dd(𝑀 \ 𝑒)}.
– cd(𝑀) = 1 + min𝑒∈𝑀 {cd(𝑀/𝑒)}
– cdd(𝑀) = min{min𝑒∈𝑀 {dd(𝑀 \ 𝑒)},min𝑒∈𝑀 {cd(𝑀/𝑒)}}

These parameters can also be set, by the height of their decomposition trees. From definition 3.6 it
follows trivially, that contraction-deletion-depth of a matroid is at most its contraction-depth, and at most
its deletion-depth. An observation is that contraction-depth and deletion-depth are dual notions, for a
matroid 𝑀 , cd(𝑀) = dd(𝑀∗), where 𝑀∗ is the dual matroid.

Kardos, Král’, Liebenau and Mach [9] introduced contraction∗-depth, as another analogue for graph
tree-depth. They introduced it with the name branch-depth, around the same time DeVos, Kwon and
Oum introduced their parameter, hence they changed the name. The last parameter that I paid attention
to is contraction∗-deletion-depth. It was first introduced and studied in [3]. These parameters gained
importance due to their connection to preconditioners in combinatorial optimization.

Definition 3.7. Contraction∗-depth decomposition is a pair (𝑇, 𝑓 ), where 𝑇 is a tree with 𝑟 (𝑀) edges
and 𝑓 maps the elements to the leaves, so for every set of elements 𝑋 ⊆ 𝑆, the number of edges in
the rooted subtree induced by 𝑓 (𝑋), denoted by | |𝑇∗(𝑋) | |, is at least 𝑟 (𝑋). Contraction∗-depth is the
minimum depth of a contraction∗-depth-decomposition of 𝑀 .

Figure 2: Example of a contraction∗-decomposition, of the same matroid as in Figure 1. The consequence
of this decomposition is that c*d(𝑀) = 3, since it is relatively easy to see, that no other decomposition
with less depth would fulfill the rank requirements.

For matroids represented over a fixed finite field F, there exists a recursive definition, that doesn’t include
the decomposition.
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The definition of contraction∗-deletion-depth in [11] is recursive for all types of matroids. It is as follows.

Definition 3.8.

• If 𝑟 (𝑀) = 0 then c*dd(𝑀) = 0.
• If 𝑟 (𝑀) = 1 then c*dd(𝑀) = 1.
• If M is disconnected, then c*dd(𝑀) is the maximum contraction∗-deletion-depth of components

of M.
• If M is connected then c*dd(𝑀) is the minimum contraction∗-deletion-depth of (𝑀 \ 𝑒) increased

by 1.

Contraction-depth, deletion-depth, contraction-deletion-depth, contraction∗-depth, and contraction∗-deletion-
depth can be extended from matroids to matrices. For a given matrix 𝐴, these parameters are defined as
the corresponding parameters of its associated column matroid.

These parameters do not share the computational properties of branch-width and branch-depth. In fact,
even the questions whether for a matroid these types of parameters are less than 𝑘 , are shown to be
NP-complete [1].

Some trivial connections between the parameters were mentioned earlier, now let us explore some more
complex ones.

In [4] it was shown, that the branch-depth of a matroid is at most its contraction-deletion-depth and
branch-width of a matroid is at most its branch-depth. Moreover, in [3] Briański, Král’ and Pekárková
presented, that branch-depth is the minor closure of contraction-deletion-depth, making them functionally
equivalent for representable matroids when minor closures are considered.

Briański, Král’ and Lamaison [2] proved another functional equality, it is between the parameters
contraction-depth and contraction∗-depth.

4 Open questions

Matroid parameters opened the door to many new research topics. For graphs with bounded tree-width,
it was shown that it is tractable to decide whether they are isomorphic. The question raise, can we
do something similar for matroids with some bounded parameter? Král’ and Pekárková are currently
working on this problem, more specifically they are trying to design a parameterized algorithm, that for
given two represented matroids with bounded branch-width, can decide whether they are isomorphic.
For contraction∗-depth there exists an approximation algorithm computing a depth-decomposition, only
issue, is that the approximation factor is not constant. It is open to improve the approximation ratio, and
to find approximation algorithms for the other parameters.
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