
The prize-collecting traveling salesman and related problems

Written by: Czirják Lilla

Supervisor: Dr. Király Tamás

May, 2024

1 Introduction

The traveling salesman problem is today considered to be classic in combinatorial optimization.

The aim of this problem is to �nd a shortest Hamiltonian cycle in a given complete graph on n nodes

with metric edge weights. It is well known that this problem is NP-hard, but numerous approximate

algorithms have been devised to solve it.

Many di�erent generalizations of the problem have been formulated. The subject of this essay is

the prize-collecting version of the traveling salesman problem, in which, in addition to the metric

edge weights, a positive weighting of the vertices of the graph is given: the prizes that the salesman

loose by missing out a city. In this case, we do not require that the tour contains all vertices, i.e. we

are not looking for a Hamiltonian cycle, but for a cycle of arbitrary size on the vertices of the graph,

starting from a given root vertex, for which the di�erence between the collected revenue and the

travel cost is maximal. In many cases, however, it is more appropriate to think of the vertex weights

as penalties paid for missed vertices rather than revenues. Thus, we can formalize the problem as a

minimization problem.

During the semester, in addition to studying the literature, I worked on implementing a simpler

heuristic approximation algorithm and testing it on random graphs, and tried some tour-improvement

methods to �nd a better solution starting from a given solution.

2 The prize-collecting traveling salesman

De�nition 1. Be given a complete graph G = (V, E), a root r ∈ V , ce ≥ 0 ∀e ∈ E metric edge

lengths, and vertex weights πv ≥ 0 ∀v ∈ V \{r}.
The prize-collecting traveling salesman problem is to �nd a cycle C = (VC , EC) in G, so that r ∈ VC,

and
∑

e∈EC
+
∑

v∈V \VC
is minimal.

A linear programming relaxation of the problem can be formulated as follows:

min
∑
e∈E

cexe +
∑
v∈V

πv(1− yv)

1

x(δ(v)) = 2yv ∀v ∈ V \{r}
x(δ(r)) ≤ 2

x(δ(S)) ≥ 2yv ∀S ⊆ V \{r}, v ∈ S

yr = 1

xe ≥ 0 ∀e ∈ E

yv ≥ 0 ∀v ∈ V

The variables xe correspond to the edges, while the variables yv can be matched to the vertices.

Given S ⊆ V , δ(S) := {e ∈ E : |e ∩ S| = 1}, and δ(v) := δ({v}).
The linear programming relaxation can be used to calculate a lower bound for the solution.

3 A heuristic algorithm

For heuristic algorithms, we usually cannot give an upper bound on the error of the solution

compared to the optimum, because it can be very large when running the algorithm on extreme

examples. In contrast, they work well in many cases on random examples and are therefore useful

from a practical point of view.

Consider the following algorithm. Given an n-vertex complete graph with metric edge length, a

positive weighting of the vertices, and a �xed root node.

Starting from the root as a one-point tour, add vertices one by one to the existing tour. At each

step, we choose the best option to increase the tour, i.e., we try to insert all the outlying vertices

between each pair of adjacent vertices in the current tour, and then perform the insertion that

improves the solution value the most. - Here we also allow the improvement to be negative at a given

step. - Finally, we choose the one that gives the best result from n tours of di�erent lengths.

3.1 Tour-improvement methods

Once we know a solution - we can even begin from a random walk - we can try to improve

it with additional heuristic algorithms. The algorithm described above has been tested with two

improvement procedures.

1. Eliminating vertices For a given tour, we can simply look at each vertex to see if leaving it out

improves the value of the solution.

2. Switching edges For each pair of edges (v1v2, u1u2) in the given tour (where the edge v1v2 is

passed through sooner than u1u2), we check whether the solution can be improved as follows.

The edges v1v2 and u1u2 are deleted from the solution and replaced by the edges v1u1 and v2u2.

The path v2 − u1 is replaced by the path u1 − v2 (walked through from the opposite direction).

Repeat this.

2

3.2 Testing

Testing the algorithms on random graphs generated with the following parameters. The number

of vertices is �xed n=100 and the vertex weights are random integers between 0 and 100. To obtain

the edge weights, I assigned uniformly random coordinates to the vertices and calculated Euclidean

distances from these. I used integer values to speed up the run time. I rounded the distances upwards,

as it is easy to see that this preserves the metric property.

I used the heuristic algorithm described earlier, and then ran the two correction methods men-

tioned above on the resulting runs. I compared how much improvement can be obtained on given

examples by �rst applying the vertex elimination and then the edge swapping, and by applying in

the reverse order. I was changing the size of the area from which the nodes are chosen, i.e. the length

of the interval used to generate random coordinates. In the following table, each row stands for the

average result of 100 runs with the given area size. According to the results, the heuristic algorithm

can be improved signi�cantly by the correction methods. Starting with the vertex elimination turned

out to be more e�ective in case of small area sizes, however, it swaps with increasing the area size.

The code is available at the following link:

https://colab.research.google.com/drive/1ODzrT0YPFiCL41IfABo3TVagoZoS9Jd1?usp=sharing

3

References

[1] Blauth, Klein, Nägele: A Better-Than-1.6-Approximation for Prize-Collecting TSP (2023)

[2] Goemans, Williamson: A general approximation technique for constrained forest problems (1995)

[3] Ausiello, Bonifaci, Leonardi, Marchetti-Spaccamela: Prize-Collecting Traveling Salesman and Re-

lated Problems

[4] Ahamdi, Gholami, Hajiaghayi, Jabbarzade, Mahdavi: 2-Approximation for Prize-Collecting

Steiner Forest

4

