The price-collecting traveling salesman and related problems

Czirják Lilla

30 May, 2024

Example of a tour in TSP

Example of a tour in PCTSP

Definition

Given a complete graph G = (V, E), a root $r \in V$, $c_e \ge 0 \ \forall e \in E$ metric lengths of the edges and $\pi_v \ge 0 \ \forall v \in V \setminus \{r\}$ vertex weights, the price-collecting traveling salesman problem is to find a cycle $C = (V_C, E_C)$ in G, so that $r \in V_C$, and $\sum_{e \in E_C} + \sum_{v \in V \setminus V_C}$ is minimal.

LP relaxation

$$\begin{array}{rcl} \min\sum_{e\in E} C_e x_e + \sum_{v\in V} \pi_v (1-y_v) \\ x(\delta(v)) &=& 2y_v \quad \forall v\in V \setminus \{r\} \\ x(\delta(r)) &\leq& 2 \\ x(\delta(S)) &\geq& 2y_v \quad \forall S\subseteq V \setminus \{r\}, \ v\in S \\ y_r &=& 1 \\ x_e &\geq& 0 \quad \forall e\in E \\ y_v &\geq& 0 \quad \forall v\in V \end{array}$$

A heuristic algorithm

 Given: a complete graph on *n* nodes with metric edge lengths, positive vertex weights and a root vertex A heuristic algorithm

- Given: a complete graph on *n* nodes with metric edge lengths, positive vertex weights and a root vertex
- Step: add one vertex to the tour which leads to the biggest improvement

A heuristic algorithm

- Given: a complete graph on *n* nodes with metric edge lengths, positive vertex weights and a root vertex
- Step: add one vertex to the tour which leads to the biggest improvement
- Choose the best tour

Improvements

1. Deleting vertices

Given a tour, check for each vertex if the cost can be decreased by deleting that vertex.

Improvements

1. Deleting vertices

Given a tour, check for each vertex if the cost can be decreased by deleting that vertex.

2. Switching edges

Improvements

1. Deleting vertices

Given a tour, check for each vertex if the cost can be decreased by deleting that vertex.

2. Switching edges

Testing on random graphs

Generating graphs:

- fixed n = 100 vertices
- vertex weights: random integers between 0 and 100
- edge lengths: random coordinates between 0 and 800, euclidean distances, rounding

Test results

	Area size	Heuristic	Length 1	Deletion first	Length 2	Switch first	Length 3
	500.0	1474.18	97.85	961.93	79.57	1203.52	83.10
	550.0	2096.05	96.02	1605.30	76.99	1803.82	81.24
	600.0	2633.75	93.09	2159.29	72.81	2297.20	77.70
	650.0	3014.64	90.25	2556.36	70.03	2627.45	73.99
	700.0	3515.59	85.21	3102.10	64.51	3104.95	68.56
	750.0	3953.21	77.60	3549.42	58.83	3545.26	62.00
	800.0	4352.13	60.53	4070.30	45.40	3996.66	47.76
	850.0	4552.50	40.87	4357.64	30.35	4303.23	31.98
	900.0	4724.41	25.40	4621.91	19.15	4576.82	20.14
	950.0	4788.13	14.26	4747.75	10.50	4703.43	11.04
)	1000.0	4808.88	8.82	4787.54	6.64	4758.12	7.01

Future plans

- Calculate lower bound for PCTSP from the LP relaxation
- Implement and test more advanced algorithms

Thank you for the attention!