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1 Introduction

In my third phase of my project we have followed to analysing sport data. we are
working with the data of the Boston Marathon, where we have much more information
about every competitor from 1898 to 2019. We continue where we left off in the previous
semester. First, we make up for the missing things and algorithms that did not fit into
the previous semester’s documentation, then we move on to the construction of the two-
dimensional model, and finally we draw a conclusion about the 3 semesters of work, in
more detail about the last 2 semesters.

In my previous semester our goal have been to try to predict the best expected results
of the following years based on our knowledge. For this purpose, we had used the Pareto
distribution to see if there would ever be a sub-two hours Boston Marathon time could be
expected in the near future. In this semester, our goal is to fit a two-dimensional model to
the data, from which we form a copula and thus try to estimate a best result. We continue
to use the R programming language

2 Summary of the previous semester

During the second phase of our project, we transitioned from analyzing the Berlin
Marathon to focusing on the Boston Marathon due to the availability of more reliable data
spanning from 1898 to 2019. Our aim was to predict the best expected results for future
years based on historical data. To accomplish this, we utilized the Pareto distribution
to explore the possibility of a sub-two-hour Boston Marathon time. Our analysis was
conducted using the R programming language. Cleaning and processing the data proved
to be a significant task, especially considering the lack of precision in early 20th-century
records. Additionally, the official Boston Marathon page ([2] and [4]) did not separate data
for half-marathoners or wheelchair marathoners, which could distort the final analysis.
After addressing these issues and cleaning the data, approximately 614,000 rows remained,
with a ratio of 1:2 women to men. Our primary goal was to fit the Pareto distribution for
each year, necessitating careful consideration of the amount of data available. Trimming
the data below a certain threshold proved effective in obtaining acceptable estimates
based on the retained information. For male competitors, this threshold was set from
1975 onwards, while for females, it was from 1981. Running times were expressed in
seconds and multiplied by -1 since the models aimed to maximize performance, whereas
we sought to minimize running times. The Pickands–Balkema–De Haan theorem [1] is
fundamental in extreme value theory, linking the tail behavior of a distribution to the
Generalized Pareto Distribution (GPD). This theorem establishes that, for a wide range
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of distributions and a sufficiently high threshold, the distribution of exceedances properly
normalized converges to the GPD. The GPD, characterized by its cumulative distribution
function, is particularly valuable for modeling extreme events and assessing risk. We
applied the Pareto distribution to our dataset annually, fitting it with quantiles ranging
from 50 to 99 for each year. Selection of the appropriate threshold was crucial to ensure
accurate parameter estimates. After selecting quantiles and assessing the goodness of fit,
we obtained parameter estimates for each year. Diagnostic plots were used to validate
the fits, ensuring they were acceptable. Diagnostic plots for male competitors in 1976
and 2019 showed minimal differences, indicating consistency in data distribution. After
selecting appropriate quantiles, we generated parameter estimates and used them to make
predictions for each year. Trimming the top and bottom 5% of estimates resulted in a more
accurate representation of the data. The application of the Pareto distribution provided
valuable insights into future race winners at the Boston Marathon. Despite challenges in
data cleaning and processing, our analysis demonstrated the effectiveness of extreme value
theory in predicting extreme events. However, a notable trend in forecasted winning times
was not observed, suggesting that achieving a sub-two-hour marathon time may take
considerable time. Overall, our project highlights the importance of utilizing advanced
statistical methods, such as the Pareto distribution, in predicting extreme events. By
leveraging historical data and mathematical models, we can gain valuable insights into
future outcomes and trends in marathon running. At the end it turned out that there was
hardly any trend in the forecasted best possible times, so it looks that it might take quite
a long time, till the winning time here will go below the magic 2 hours.

3 Data

As we can see in the 1. figure, we are looking at data from 1971 onwards to 2019 because
we did not have sufficient quantity and quality of data from previous years. This is because
the world’s best runners did not participate in this race from the beginning, but started
taking part over time, which means that results from earlier years could significantly
deteriorate our findings. Furthermore, we see that the best result ever recorded is 7382
seconds for men, while it is 8337 seconds for women. On average, they completed the
marathon in 13699 seconds, which is approximately 4 hours (≈ 3 : 48).

In the 2. figure, we see the number of competitors starting each year. It is evident
that from 1971 to 2010, the number of competitors increased exponentially. However, due
to COVID-19, there was a decline in the number of competitors starting in 2020. As a
result, we did not consider data from these years because realistically, competitions will
return to such levels only after 2023, and some competitions were even canceled during
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Figure .a: Summary

this period. We also see that the highest number of competitors was in 2014.

Figure .b: Histogram

4 Copula

4.1 Definition

Copulas are tools used to model dependency between variables. When studying depen-
dencies among multiple variables, it is often insufficient to consider only the distributions
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Figure 4: Estimated Male plot

Figure 5: Estimated Female plot

of the variables and their correlation coefficients. Copulas are particularly useful in cases
where there are non-linear relationships between variables or their distributions are com-
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plex. A copula is a multivariate distribution function that specifies the joint distribution
of variables given the marginal distributions. Not to forget to mention that, they have uni-
form margins. The copula separates the dependency between variables from the marginal
distributions, allowing the use of independent marginal distributions in dependency mod-
eling. Let F be a multivariate distribution function, and F1, F2, . . . , Fd be the marginal
distribution functions of the individual variables. The copula, denoted by C, is a function
such that: F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)). [3]

Where x1, x2, . . . , xd are the values of the variables. Thus, the copula arises from the
joint function of the marginal distribution functions of the individual variables. Copulas
are commonly used in various fields such as financial modeling, risk management, actuarial
science, environmental science, and many others. Their benefits include more accurate
modeling of complex dependency structures between variables, which is crucial for effective
decision-making and risk management.

The Gaussian copula for a given correlation matrix R ∈ [−1, 1]d×d, the Gaussian copula
with parameter matrix R can be written as

CGauss
R (u) = ΦR

(
Φ−1(u1), . . . ,Φ

−1(ud)
)
,

where Φ−1 is the inverse cumulative distribution function of a standard normal and
ΦR is the joint cumulative distribution function of a multivariate normal distribution with
mean vector zero and covariance matrix equal to the correlation matrix R.

The Frank copula is a popular member of the family of copulas, named after Józef
Frank. It is particularly suitable for modeling symmetric dependency structures and can
handle both positive and negative correlations.

The Frank copula is an Archimedean copula, which can be parameterized by a single
parameter, θ, which indicates the degree of dependence. The closed-form expression for
the Frank copula is:

Cθ(u, v) = −1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
,

where u and v are the marginal distributions on the [0, 1] interval.

Parameters:

• θ: The dependence parameter, where θ ∈ (−∞,∞) and θ ̸= 0.

– If θ > 0, the variables exhibit positive dependence.

– If θ < 0, the variables exhibit negative dependence.

– If θ = 0, the variables are independent.

6



5 Two-dimensional model

Continuing the previous work, our first goal was to create a two-dimensional model.
We were able to do this by pairing the male and female competitors each year in such
a way that the best male competitor was matched with the best female competitor, the
second best female competitor with the second best male competitor, and so on.

For each gender, we needed a threshold based on which we could perform this matching
and, since we needed to fit a Pareto distribution to this data, it was obvious to use the
Anderson-Darling test used in the previous semester to determine with which values below
the threshold we can work well, we know this with the p-value of the test. The Anderson-
Darling Test is a goodness-of-fit test that determines how well your data fits a given
distribution. Based on experience, we can make very few acceptable matches, in our case,
even in the case of the chosen threshold of 9200 sec for the females and 8000 sec for the
males, with a p-value of 0.04 for women. The p-value of the test for the males is smaller
than we would have liked, but if a better fit for males is preferred, we will not get an
acceptable female match.

6 Copula model

The 281 points after determining the limit are shown in 3. figure. Then we normalized
the points into the [0, 1] interval with the pgpd function, so we can get what copula model
fits our data. For this, the BiCopSelect function, which gives us not only the copula model,
but also the corresponding parameter and the Kendall-tau value. This is why we got the
Gaussian copula and the second best copula was the Frank copula, which we talked about
in more detail above. Then we generated a data set containing 1000 points for the Gaussian
copula and for the Frank copula, a comparison of this a can be seen in the figure 4, where
the generated Gaussian points are represented by red dots and the Frank points by black
dots.

Following this, we conducted a brief test using gofCopula which is a goodness-of-fit
tests for copulas based on the empirical process comparing the empirical copula with a
parametric estimate of the copula derived under the null hypothesis. to assess whether the
fitted copula is appropriate for our data. The returned values are depicted in the 5. figure,
from which, based on the p-value, we can accept the null hypothesis that the distribution
originates from a Gaussian copula.
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Figure 4: Pairs

Figure 5: Normalized pairs
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Figure 4: Gauss copula

Figure 5: Frank copula
7 Evaluation

After the success of the test, we aimed to estimate a value that we could claim both
genders will certainly achieve in the future. We based this on a 100-year level, as we
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Figure 4: Test

observed no expected improvement in results in the near future, as seen in the past
semester. Subsequently, using the qgpd function (where the parameters are those used
in the [0,1] transformation), we transformed the estimated value back into the original
range. This is depicted in the 6. figure, where the blue dots represent our original pairings,
and the red dot represents the estimated value, which we are confident both genders will
achieve in the next 100 years. For males, this value is 7468 seconds, while for females, it
is 8390 seconds. Thus, we can expect a race in the next 100 years where both the male
and female winners achieve this result.

8 Conclusion

Our project endeavors to predict future outcomes of the Boston Marathon, leveraging
historical data and statistical modeling techniques. Despite inherent data challenges, we
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successfully applied the Pareto distribution to gain insights into potential winning times.
However, the elusive sub-two-hour marathon time remains a distant milestone. Continuing
our work, we constructed a two-dimensional model by pairing male and female competi-
tors. Copula analysis provided insights into gender performance dependency, with the
Gaussian copula emerging as the preferred model. Validation tests further bolstered con-
fidence in our modeling approach. With validated models at hand, we projected future
outcomes, identifying threshold values for both male and female winners with confidence,
but there are still tasks left (e.g. quantifying the uncertainty of the estimate, examining
the dependence on the thresholds).
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