The largest intersecting family of interval along a fixed cyclic permutation without element contained in more than two other elements

Xu ZhiXuan^{*a}

^aSchool of mathematical Sciences, Eotvos Lorand University

Abstract

A cyclic permutation π of the elements of $X = \{x_1, \ldots, x_n\}$ is an ordering of the elements along a cycle. It is known that the size of intersecting family of kelemment $(1 \le k \le \frac{n}{2})$ interval along π at most k. And the size of inclusion-free family of interval along π is at most n. For the reason that an intersecting family A of interval along a fixed cyclic permutation π without element contained in more than two other elements must contain an inclusion-free intersecting family . We can obtain a boundary of the largest size of A by these results. On the basis of the boundary, this article continues to explore the structure of the largest size of A and determine its value.

Keywords: cyclic permutation; inclusion-free family; intersecting family; P-free

1 Introduction and a simple boundary

A cyclic permutation π of the elements of $X = \{x_1, \ldots, x_n\}$ is an ordering of the elements along a cycle. A set $a \subset X$ is called interval(along π) if its element are consecutive along π . A set $a \subset X$ is called *interval* (along π) if its element are consecutive along π .

^{*}Email: xuzhixuan202309@126.com (Z.X. Xu)

For the poset $P = \{x, y, z\}$ such that $x \subset y$ and $x \subset z$. An intersecting family A of interval along a fixed cyclic permutation π without element contained in more than two other elements is actually a P - free intersecting family. Let \overline{A} be the largest such family. It is easy to found that when $n \leq 2$, $|\overline{A}| = n$ and when n = 3 or 4, $|\overline{A}| = n + 1$. So in this report we talk about $n \geq 5$. First, It is easy to found such family with size n + 1. Such as $\{a : all \ the \ intervals \ with \ size \ n - 1\} \cup \{a : the \ intervals \ with \ size \ n\}$. So $|\overline{A}| \geq n + 1$.

We divide A into two part. Let $M_A \in A$ is the largest inclusion-free intersecting family of A such that for each $b \in A/M_A$, $\exists a \in M_A$, $a \subset b$.

From the following lemma we can obtain a simple bound of $|\bar{A}|$.

Lemma 1.1. [1] If $\forall a \in M_A$, $|a| \leq \frac{n}{2}$, then $|M_A| \leq \frac{n}{2}$.

Proof. Denote $|M_A|=m$. Since each two distinct elements of M_A must have different start position, we can reperesent each element of M_A by its start position: $M_A = \{i_1^*, i_2^*, \ldots, i_m^*\}$. And let $i_1^* = 1^*$ be the shortest interval. Any point of 1^* can serve at most once as a starting point and once as endpoint. For the reason that for any $b \in M_A, c \in M_A, |b|+|c| \leq n$, we cannot have a member b with endpoint j and a member c with starting point j+1 $(1 \leq |1^*| - 1)$ simutaneously in 1^* . So only one of such b and c can exist. If 1^* is included we obtain $|M_A| \leq |1^*| \leq \frac{n}{2}$.

Theorem 1.2. $n+1 \leq |\overline{A}| \leq 2n$, and $\exists a \in \overline{A}, |a| > \frac{n}{2}$.

Proof. For $\forall a \in M_A$, there exists at most one element $b \in A/M_A$ such that $a \subset b$. So $|A/M_A| \leq |M_A|$ and we can know that $|\bar{A}| \leq 2|M_A|$. Form $|\bar{A}| \geq n+1$ and lemma 1.1, we know that there must exist $a \in \bar{A}, |a| > \frac{n}{2}$. Since each two distinct elements of M_A must have different start position, we claim that $|M_A| \leq n$.

2 Largest size and the way to construct

Theorem 2.1. When $|M_A| = n |A| \leq \lfloor \frac{3}{2}n \rfloor$

Proof. Since each two distinct elements of M_A must have different start position, we can reperesent each element of M_A by its start position: $M_A = \{1^*, 2^*, \ldots, n^*\}$. We claim that $\forall i^* \in M_A$, we have $|i^*| \leq |(i+1)^*|$ (*i mod n*) [Unless the endpoint of $(i+1)^*$ is $i + |(i+1)^*| \leq i - 1 + |i^*|$ (the right side of the inequality is the end point of i^*), we get $(i+1)^* \subset i^*$.] From $|n^*| \le |1^*| \le |2^*| \le \ldots \le |n^*|$, we get $|1^*| = |2^*| = \ldots = |n^*| = k$. When $k \le \frac{n}{2}$ or k = n - 1 or k = n the result is trivial. We consider $\frac{n}{2} < k < n - 1$.

For $\forall b \in A/M_A$, $\exists i^* \subset b$, then at least one of $(i-1)^*$ and $(i+1)^*$ is subset of b, so $|A/M_A| \leq \frac{|M_A|}{2} = \frac{n}{2}$, we get $|A| \leq \lfloor \frac{3}{2}n \rfloor$

Observation 1. For $n \ge 5$, we can always found a $a \ P - free$ intersecting family A of intervals with $|A| = \lfloor \frac{3}{2}n \rfloor$. For example $A = \{i^* : |i^*| = \lfloor \frac{n}{2} \rfloor + 1, i = 1, 2, ..., n\} \cup \{i^* : |i^*| = \lfloor \frac{n}{2} \rfloor + 2, i \text{ is even, } i = 1, 2, ..., n\}.$

Theorem 2.2. When $|M_A| \leq n-1$. If $|M_A| = n-1$ and n is odd, $|A| \leq \lfloor \frac{3}{2}n \rfloor$. Otherwise $|A| < \lfloor \frac{3}{2}n \rfloor$

Proof. We denote $|M_A| = m < n$, $M_A = \{i_1^*, i_2^*, \dots, i_m^*\}$, $1 = i_1 < i_2 < \dots < i_m < n$. When $m < \frac{3}{4}n$, $|A| < \frac{3}{2}n$, the result is trivial. We consider $m \ge \frac{3}{4}n$.

First we discuss the case $i_1 i_2 i_3 \dots i_{m-1} i_m$ are consecutive and then extend the result to other cases.

If $i_1 i_2 i_3 \dots i_{m-1} i_m$ are consecutive, $M_A = \{1^*, 2^*, \dots, m^*\}$, then for $\forall b \in A/M_A, t^* \subset b$ but $t - 1^* \notin b, t + 1^* \notin b$ is possible only if

$$(the end point of t + 1^*)t + |t + 1^*| \ge t - 1 + |t^*| (the end point of t^*)$$
(2.1)

Let T be the number of such t^* among M_A , then $|A/M_A| \leq \frac{m}{2} + T$.

By inequality 2.1

$$(the end point of m^*)m - 1 + |m^*| \ge m - 1 + |1^*| + T$$
(2.2)

$$(the end point of m^*)m - 1 + |m^*| < n + |1^*| (the end point of 1^*)$$
(2.3)

$$\Rightarrow T < n - m + 1 \Rightarrow T \le n - m \tag{2.4}$$

We get $|A/M_A| \leq \frac{m}{2} + T \leq n - \frac{m}{2}$ and $|A| \leq n + \frac{m}{2}$. When m = n - 1 and n is odd, $|A| \leq \lfloor \frac{3}{2}n \rfloor$. Otherwise $|A| < \lfloor \frac{3}{2}n \rfloor$.

We extend the result in the case that $i_1i_2i_3...i_{m-1}i_m$ are not consecutive. Observing the permutation $i_1i_2i_3...i_{m-1}i_m$, we can found that it is union of some segments and m < n-1.

Assume the permutation is constructed by d segments: $i_{j1}i_{j2}\ldots i_{jm_j}$ $j = 1, 2, \ldots, d$. Let $i_{11}=1$ and $i_{dm_d} < n$. For each $j = 1, 2, \ldots, d$, let $|i_{j1}| = k_j$, T_j be the number of elements t^* among each $B_j = \{i_{j1}^*, i_{j2}^*, \ldots, i_{jm_j}^*\}$ has property 2.1. We get m = $m_1 + m_2 + \cdots + m_d$, $T = T_1 + T_2 + \cdots + T_d$ and inequality

$$i_{j1} - 1 + k_j + m_j - 1 < (the end position of i_{(j+1)1}^*)$$
 (2.5)

$$\Rightarrow i_{j1} - 1 + k_j + m_j - 1 \le i_{(j+1)1} - 2 + k_{j+1} \tag{2.6}$$

From calculation

$$\begin{split} t_1 + i_{11} - 1 + k_1 + m_1 - 1 &\leq i_{21} - 2 + k_2 \\ t_1 + i_{11} - 1 + k_1 + m_1 - 1 &\leq i_{21} - 2 + k_2 \\ t_2 + i_{21} - 1 + k_2 + m_2 - 1 &\leq i_{21} - 2 + k_3 \implies t + m \leq n \implies t \leq n - m \end{split}$$

 $t_d + i_{d1} - 1 + k_d + m_d - 1 \le i_{11} - 2 + k_1$

We get $|A/M_A| \leq \frac{m}{2} + T \leq n - \frac{m}{2}$ and $|A| \leq n + \frac{m}{2}$. For m < n - 1, we have $|A| < \lfloor \frac{3}{2}n \rfloor$

Corollary 2.3. $|\bar{A}| = \lfloor \frac{3}{2}n \rfloor$.

Theorem 2.4. $\forall a \in \overline{A}, |a| \ge \lfloor \frac{n}{2} \rfloor + 1.$

Proof. we know $|\bar{A}| = \lfloor \frac{3}{2}n \rfloor$ and it can happen only if $|M_A| = n - 1, n$ is odd or $|M_A| = n$. From the proof of theorem 2.1, when $|M_A| = n$, the result is trivial.

For $|M_A| = n - 1$, *n* is odd, we denote $M_A = \{1^*, 2^*, \dots, n - 1^*\}$ and $|1^*| < |2^*| < \dots < |n - 1^*|$, let $|1^*| = k$, we get

$$\begin{cases} n-1+|n-1^*| \le n+k-1\\ if \ k \le \frac{n}{2}, \ then \ k+1-1+|k+1^*| \ge n-k+1\\ \Rightarrow n-k+1 \le k+1 \Rightarrow 2k \ge n \Rightarrow k \ge \frac{n}{2} \end{cases} \Rightarrow \begin{cases} |n-1^*| \le k+1\\ |k+1^*| \ge n-k+1\\ \end{cases}$$

When n is odd, there is a contradiction.

References

[1] Gerbner.D., Patkos.B. (2018). Extremal Finite Set Theory. 10.1201/9780429440809.