The largest intersecting family of interval along a fixed cyclic permutation without element contained in more than two other elements

Xu ZhiXuan*a
${ }^{\text {a }}$ School of mathematical Sciences, Eotvos Lorand University

Abstract

A cyclic permutation π of the elements of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is an ordering of the elements along a cycle. It is known that the size of intersecting family of k elemment $\left(1 \leq k \leq \frac{n}{2}\right)$ interval along π at most k . And the size of inclusion-free family of interval along π is at most n. For the reason that an intersecting family A of interval along a fixed cyclic permutation π without element contained in more than two other elements must contain an inclusion-free intersecting family . We can obtain a boundary of the largest size of A by these results. On the basis of the boundary, this article continues to explore the structure of the largest size of A and determine its value.

Keywords: cyclic permutation; inclusion-free family; intersecting family; P-free

1 Introduction and a simple boundary

A cyclic permutation π of the elements of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is an ordering of the elements along a cycle. A set $a \subset X$ is called interval(along π) if its element are consecutive along π. A set $a \subset X$ is called interval (along π) if its element are consecutive along π.

[^0]For the poset $P=\{x, y, z\}$ such that $\mathrm{x} \subset \mathrm{y}$ and $\mathrm{x} \subset \mathrm{z}$. An intersecting family A of interval along a fixed cyclic permutation π without element contained in more than two other elements is actually a $P-$ free intersecting family. Let \bar{A} be the largest such family. It is easy to found that when $n \leq 2,|\bar{A}|=n$ and when $n=3$ or $4,|\bar{A}|=n+1$. So in this report we talk about $n \geq 5$. First, It is easy to found such family with size $n+1$. Such as $\{a$: all the intervals with size $n-1\} \cup\{a$: the intervals with size $n\}$. So $|\bar{A}| \geq n+1$.

We divide A into two part. Let $M_{A} \in A$ is the largest inclusion-free intersecting family of A such that for each $b \in A / M_{A}, \exists a \in M_{A}, a \subset b$.

From the following lemma we can obtain a simple bound of $|\bar{A}|$.
Lemma 1.1. [1] If $\forall a \in M_{A},|a| \leq \frac{n}{2}$, then $\left|M_{A}\right| \leq \frac{n}{2}$.
Proof. Denote $\left|M_{A}\right|=\mathrm{m}$. Since each two distinct elements of M_{A} must have different start position, we can reperesent each element of M_{A} by its start position: $M_{A}=\left\{i_{1}{ }^{*}, i_{2}{ }^{*}, \ldots, i_{m}{ }^{*}\right\}$. And let $i_{1}{ }^{*}=1^{*}$ be the shortest interval. Any point of 1^{*} can serve at most once as a starting point and once as endpoint. For the reason that for any $\mathrm{b} \in M_{A}, \mathrm{c} \in M_{A},|\mathrm{~b}|+|\mathrm{c}| \leq n$, we cannot have a member b with endpoint j and a member c with starting point $\mathrm{j}+1$ $\left(1 \leq\left|1^{*}\right|-1\right)$ simutaneously in 1^{*}. So only one of such b and c can exist. If 1^{*} is included we obtain $\left|M_{A}\right| \leq\left|1^{*}\right| \leq \frac{n}{2}$.

Theorem 1.2. $n+1 \leq|\bar{A}| \leq 2 n$, and $\exists a \in \bar{A},|a|>\frac{n}{2}$.
Proof. For $\forall a \in M_{A}$, there exists at most one element $b \in A / M_{A}$ such that $a \subset b$. So $\left|A / M_{A}\right| \leq\left|M_{A}\right|$ and we can know that $|\bar{A}| \leq 2\left|M_{A}\right|$. Form $|\bar{A}| \geq n+1$ and lemma 1.1, we know that there must exist $a \in \bar{A},|a|>\frac{n}{2}$. Since each two distinct elements of M_{A} must have different start position, we claim that $\left|M_{A}\right| \leq n$.

2 Largest size and the way to construct

Theorem 2.1. When $\left|M_{A}\right|=n|A| \leq\left\lfloor\frac{3}{2} n\right\rfloor$
Proof. Since each two distinct elements of M_{A} must have different start position, we can reperesent each element of M_{A} by its start position: $M_{A}=\left\{1^{*}, 2^{*}, \ldots, n^{*}\right\}$. We claim that $\forall i^{*} \in M_{A}$, we have $\left|i^{*}\right| \leq\left|(i+1)^{*}\right|(i \bmod n)$ [Unless the endpoint of $(i+1)^{*}$ is $i+\left|(i+1)^{*}\right| \leq i-1+\left|i^{*}\right|$ (the right side of the inequality is the end point of i^{*}), we get
$(i+1)^{*} \subset i^{*}$.] From $\left|n^{*}\right| \leq\left|1^{*}\right| \leq\left|2^{*}\right| \leq \ldots \leq\left|n^{*}\right|$, we get $\left|1^{*}\right|=\left|2^{*}\right|=\ldots=\left|n^{*}\right|=k$. When $k \leq \frac{n}{2}$ or $k=n-1$ or $k=n$ the result is trivial. We consider $\frac{n}{2}<k<n-1$.

For $\forall b \in A / M_{A}, \exists i^{*} \subset b$, then at least one of $(i-1)^{*}$ and $(i+1)^{*}$ is subset of b, so $\left|A / M_{A}\right| \leq \frac{\left|M_{A}\right|}{2}=\frac{n}{2}$, we get $|A| \leq\left\lfloor\frac{3}{2} n\right\rfloor$

Observation 1. For $n \geq 5$, we can always found a a P-free intersecting family A of intervals with $|A|=\left\lfloor\frac{3}{2} n\right\rfloor$. For example $A=\left\{i^{*}:\left|i^{*}\right|=\left\lfloor\frac{n}{2}\right\rfloor+1, i=1,2, \ldots, n\right\} \cup\left\{i^{*}\right.$: $\left|i^{*}\right|=\left\lfloor\frac{n}{2}\right\rfloor+2, i$ is even, $\left.i=1,2, \ldots, n\right\}$.

Theorem 2.2. When $\left|M_{A}\right| \leq n-1$. If $\left|M_{A}\right|=n-1$ and n is odd, $|A| \leq\left\lfloor\frac{3}{2} n\right\rfloor$. Otherwise $|A|<\left\lfloor\frac{3}{2} n\right\rfloor$

Proof. We denote $\left|M_{A}\right|=m<n, M_{A}=\left\{i_{1}{ }^{*}, i_{2}{ }^{*}, \ldots . i_{m}{ }^{*}\right\}, 1=i_{1}<i_{2}<\cdots<i_{m}<n$. When $m<\frac{3}{4} n,|A|<\frac{3}{2} n$, the result is trivial. We consider $m \geq \frac{3}{4} n$.

First we discuss the case $i_{1} i_{2} i_{3} \ldots i_{m-1} i_{m}$ are consecutive and then extend the result to other cases.

If $i_{1} i_{2} i_{3} \ldots i_{m-1} i_{m}$ are consecutive, $M_{A}=\left\{1^{*}, 2^{*}, \ldots, m^{*}\right\}$, then for $\forall b \in A / M_{A}, t^{*} \subset b$ but $t-1^{*} \nsubseteq b, t+1^{*} \nsubseteq b$ is possible only if

$$
\begin{equation*}
\text { (the end point of } \left.t+1^{*}\right) t+\left|t+1^{*}\right| \geq t-1+\left|t^{*}\right|\left(\text { the end point of } t^{*}\right) \tag{2.1}
\end{equation*}
$$

Let T be the number of such t^{*} among M_{A}, then $\left|A / M_{A}\right| \leq \frac{m}{2}+T$.
By inequality 2.1

$$
\begin{equation*}
\text { (the end point of } \left.m^{*}\right) m-1+\left|m^{*}\right| \geq m-1+\left|1^{*}\right|+T \tag{2.2}
\end{equation*}
$$

(the end point of $\left.m^{*}\right) m-1+\left|m^{*}\right|<n+\left|1^{*}\right|\left(\right.$ the end point of $\left.1^{*}\right)$

$$
\begin{equation*}
\Rightarrow T<n-m+1 \Rightarrow T \leq n-m \tag{2.3}
\end{equation*}
$$

We get $\left|A / M_{A}\right| \leq \frac{m}{2}+T \leq n-\frac{m}{2}$ and $|A| \leq n+\frac{m}{2}$. When $m=n-1$ and n is odd, $|A| \leq\left\lfloor\frac{3}{2} n\right\rfloor$. Otherwise $|A|<\left\lfloor\frac{3}{2} n\right\rfloor$.

We extend the result in the case that $i_{1} i_{2} i_{3} \ldots i_{m-1} i_{m}$ are not consecutive. Observing the permutation $i_{1} i_{2} i_{3} \ldots i_{m-1} i_{m}$, we can found that it is union of some segments and $m<n-1$.

Assume the permutation is constructed by d segments: $i_{j 1} i_{j 2} \ldots i_{j m_{j}} j=1,2, \ldots, d$. Let $i_{11}=1$ and $i_{d m_{d}}<n$. For each $j=1,2, \ldots, d$, let $\left|i_{j 1}\right|=k_{j}, T_{j}$ be the number of elements t^{*} among each $B_{j}=\left\{i_{j 1}{ }^{*}, i_{j 2}{ }^{*}, \ldots, i_{j m_{j}}{ }^{*}\right\}$ has property 2.1. We get $m=$ $m_{1}+m_{2}+\cdots+m_{d}, T=T_{1}+T_{2}+\cdots+T_{d}$ and inequality

$$
\begin{equation*}
i_{j 1}-1+k_{j}+m_{j}-1<\left(\text { the end position of } i_{(j+1) 1}{ }^{*}\right) \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow i_{j 1}-1+k_{j}+m_{j}-1 \leq i_{(j+1) 1}-2+k_{j+1} \tag{2.6}
\end{equation*}
$$

From calculation

$$
\begin{gathered}
t_{1}+i_{11}-1+k_{1}+m_{1}-1 \leq i_{21}-2+k_{2} \\
t_{1}+i_{11}-1+k_{1}+m_{1}-1 \leq i_{21}-2+k_{2} \\
t_{2}+i_{21}-1+k_{2}+m_{2}-1 \leq i_{21}-2+k_{3} \quad \ldots t+m \leq n \Rightarrow t \leq n-m \\
\ldots \\
t_{d}+i_{d 1}-1+k_{d}+m_{d}-1 \leq i_{11}-2+k_{1}
\end{gathered} \Rightarrow t
$$

We get $\left|A / M_{A}\right| \leq \frac{m}{2}+T \leq n-\frac{m}{2}$ and $|A| \leq n+\frac{m}{2}$. For $m<n-1$, we have $|A|<\left\lfloor\frac{3}{2} n\right\rfloor$

Corollary 2.3. $|\bar{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$.
Theorem 2.4. $\forall a \in \bar{A},|a| \geq\left\lfloor\frac{n}{2}\right\rfloor+1$.
Proof. we know $|\bar{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$ and it can happen only if $\left|M_{A}\right|=n-1, n$ is odd or $\left|M_{A}\right|=n$. From the proof of theorem 2.1, when $\left|M_{A}\right|=n$, the result is trivial.

For $\left|M_{A}\right|=n-1, n$ is odd, we denote $M_{A}=\left\{1^{*}, 2^{*}, \ldots, n-1^{*}\right\}$ and $\left|1^{*}\right|<\left|2^{*}\right|<$ $\cdots<\left|n-1^{*}\right|$, let $\left|1^{*}\right|=k$, we get
$\left\{\begin{array}{r}n-1+\left|n-1^{*}\right| \leq n+k-1 \\ \text { if } k \leq \frac{n}{2}, \text { then } k+1-1+\left|k+1^{*}\right| \geq n-k+1\end{array} \Rightarrow\left\{\begin{array}{r}\left|n-1^{*}\right| \leq k+1 \\ \left|k+1^{*}\right| \geq n-k+1\end{array}\right.\right.$
$\Rightarrow n-k+1 \leq k+1 \Rightarrow 2 k \geq n \Rightarrow k \geq \frac{n}{2}$
When n is odd, there is a contradiction.

References

[1] Gerbner.D., Patkos.B. (2018). Extremal Finite Set Theory. 10.1201/9780429440809.

[^0]: *Email: xuzhixuan202309@126.com (Z.X. Xu)

