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Abstract

A cyclic permutation π of the elements of X = {x1, . . . , xn} is an ordering of

the elements along a cycle. It is known that the size of intersecting family of k-

elemment(1≤ k ≤ n
2 ) interval along π at most k. And the size of inclusion-free

family of interval along π is at most n. For the reason that an intersecting family

A of interval along a fixed cyclic permutation π without element contained in more

than two other elements must contain an inclusion-free intersecting family . We

can obtain a boundary of the largest size of A by these results. On the basis of the

boundary, this article continues to explore the structure of the largest size of A and

determine its value.
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1 Introduction and a simple boundary

A cyclic permutation π of the elements of X = {x1, . . . , xn} is an ordering of the

elements along a cycle. A set a⊂X is called interval(along π) if its element are consecutive

along π. A set a⊂X is called interval (along π) if its element are consecutive along π.
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For the poset P = {x, y, z} such that x⊂y and x⊂z. An intersecting family A of

interval along a fixed cyclic permutation π without element contained in more than two

other elements is actually a P −free intersecting family. Let Ā be the largest such family.

It is easy to found that when n ≤ 2, |Ā| = n and when n = 3 or 4, |Ā| = n+1. So in this

report we talk about n≥5. First, It is easy to found such family with size n+ 1. Such as

{a : all the intervals with size n− 1}∪{a : the intervals with size n}. So |Ā| ≥ n+ 1.

We divide A into two part. Let MA∈ A is the largest inclusion-free intersecting family

of A such that for each b ∈ A/MA, ∃ a ∈ MA, a ⊂ b.

From the following lemma we can obtain a simple bound of |Ā|.

Lemma 1.1. [1] If ∀ a ∈ MA, |a| ≤ n
2
, then |MA| ≤ n

2
.

Proof. Denote |MA|=m. Since each two distinct elements ofMA must have different start

position, we can reperesent each element ofMA by its start position: MA = {i1∗, i2∗, . . . , im∗}.
And let i1

∗ = 1∗ be the shortest interval. Any point of 1∗ can serve at most once as a start-

ing point and once as endpoint. For the reason that for any b∈ MA,c∈ MA,|b|+|c|≤ n,

we cannot have a member b with endpoint j and a member c with starting point j+1

(1 ≤ |1∗| − 1) simutaneously in 1∗. So only one of such b and c can exist. If 1∗ is included

we obtain |MA| ≤ |1∗| ≤ n
2
.

Theorem 1.2. n+ 1 ≤ |Ā| ≤ 2n, and ∃ a ∈ Ā, |a| > n
2
.

Proof. For ∀ a ∈ MA, there exists at most one element b ∈ A/MA such that a ⊂ b. So

|A/MA| ≤ |MA| and we can know that |Ā| ≤ 2|MA|. Form |Ā| ≥ n+ 1 and lemma 1.1,

we know that there must exist a ∈ Ā,|a| > n
2
. Since each two distinct elements of MA

must have different start position, we claim that |MA| ≤ n.

2 Largest size and the way to construct

Theorem 2.1. When |MA| = n |A| ≤ ⌊3
2
n⌋

Proof. Since each two distinct elements ofMA must have different start position, we can

reperesent each element ofMA by its start position: MA = {1∗, 2∗, . . . , n∗}. We claim

that ∀i∗ ∈ MA, we have |i∗| ≤ |(i+ 1)∗| (i mod n) [Unless the endpoint of (i+ 1)∗ is

i+ |(i+ 1)∗| ≤ i− 1 + |i∗| (the right side of the inequality is the end point of i∗), we get
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(i+ 1)∗ ⊂ i∗.] From |n∗| ≤ |1∗| ≤ |2∗| ≤ . . . ≤ |n∗|, we get |1∗| = |2∗| = . . . = |n∗| = k.

When k ≤ n
2
or k = n− 1 or k = n the result is trivial. We consider n

2
< k < n− 1.

For ∀b ∈ A/MA, ∃i∗ ⊂ b, then at least one of (i− 1)∗ and (i+ 1)∗ is subset of b, so

|A/MA| ≤ |MA|
2

= n
2
, we get |A| ≤ ⌊3

2
n⌋

Observation 1. For n ≥ 5,we can always found a a P − free intersecting family A of

intervals with |A| = ⌊3
2
n⌋. For example A = {i∗ : |i∗| = ⌊n

2
⌋ + 1, i = 1, 2, . . . , n} ∪ {i∗ :

|i∗| = ⌊n
2
⌋+ 2, i is even, i = 1, 2, . . . , n}.

Theorem 2.2. When |MA| ≤ n− 1. If |MA| = n− 1 and n is odd, |A| ≤ ⌊3
2
n⌋. Other-

wise |A| < ⌊3
2
n⌋

Proof. We denote|MA| = m < n, MA = {i1∗, i2∗, . . . .im∗}, 1 = i1 < i2 < · · · < im < n.

When m < 3
4
n, |A| < 3

2
n, the result is trivial. We consider m ≥ 3

4
n.

First we discuss the case i1i2i3 . . . im−1im are consecutive and then extend the result

to other cases.

If i1i2i3 . . . im−1im are consecutive, MA = {1∗, 2∗, . . . ,m∗}, then for ∀b ∈ A/MA, t
∗ ⊂ b

but t− 1∗ ⊈ b, t+ 1∗ ⊈ b is possible only if

(the end point of t+ 1∗)t+ |t+ 1∗| ≥ t− 1 + |t∗|(the end point of t∗) (2.1)

Let T be the number of such t∗ among MA, then|A/MA| ≤ m
2
+ T .

By inequality 2.1

(the end point of m∗)m− 1 + |m∗| ≥ m− 1 + |1∗|+ T (2.2)

(the end point of m∗)m− 1 + |m∗| < n+ |1∗|(the end point of 1∗) (2.3)

⇒ T < n−m+ 1 ⇒ T ≤ n−m (2.4)

We get|A/MA| ≤ m
2
+ T ≤ n− m

2
and |A| ≤ n+ m

2
. When m = n− 1 and n is odd,

|A| ≤ ⌊3
2
n⌋. Otherwise |A| < ⌊3

2
n⌋.

We extend the result in the case that i1i2i3 . . . im−1im are not consecutive. Observing

the permutation i1i2i3 . . . im−1im, we can found that it is union of some segments and

m < n− 1.

Assume the permutation is constructed by d segments: ij1ij2 . . . ijmj
j = 1, 2, . . . , d.

Let i11=1 and idmd
< n. For each j = 1, 2, . . . , d, let |ij1| = kj, Tj be the number

of elements t∗ among each Bj = {ij1∗, ij2∗, . . . , ijmj

∗} has property 2.1. We get m =

m1 +m2 + · · ·+md, T = T1 + T2 + · · ·+ Td and inequality

ij1 − 1 + kj +mj − 1 < (the end position of i(j+1)1
∗) (2.5)
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⇒ ij1 − 1 + kj +mj − 1 ≤ i(j+1)1 − 2 + kj+1 (2.6)

From calculation

t1 + i11 − 1 + k1 +m1 − 1 ≤ i21 − 2 + k2

t1 + i11 − 1 + k1 +m1 − 1 ≤ i21 − 2 + k2

t2 + i21 − 1 + k2 +m2 − 1 ≤ i21 − 2 + k3

. . .

td + id1 − 1 + kd +md − 1 ≤ i11 − 2 + k1

⇒ t+m ≤ n ⇒ t ≤ n−m

We get |A/MA| ≤ m
2
+ T ≤ n− m

2
and |A| ≤ n+ m

2
. For m < n − 1, we have

|A| < ⌊3
2
n⌋

Corollary 2.3. |Ā| = ⌊3
2
n⌋.

Theorem 2.4. ∀a ∈ Ā, |a| ≥ ⌊n
2
⌋+ 1.

Proof. we know |Ā| = ⌊3
2
n⌋ and it can happen only if |MA| = n−1, n is odd or |MA| = n.

From the proof of theorem 2.1, when |MA| = n , the result is trivial.

For |MA| = n − 1, n is odd, we denote MA = {1∗, 2∗, . . . , n− 1∗} and |1∗| < |2∗| <
· · · < |n− 1∗|, let |1∗| = k, we get{

n− 1 + |n− 1∗| ≤ n+ k − 1

if k ≤ n
2
, then k + 1− 1 + |k + 1∗| ≥ n− k + 1

⇒

{
|n− 1∗| ≤ k + 1

|k + 1∗| ≥ n− k + 1

⇒ n− k + 1 ≤ k + 1 ⇒ 2k ≥ n ⇒ k ≥ n
2

When n is odd, there is a contradiction.
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