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Abstract

A cyclic permutation 7 of the elements of X = {z1,...,z,} is an ordering of
the elements along a cycle. It is known that the size of intersecting family of k-
elemment(1< & < %) interval along 7 at most k. And the size of inclusion-free
family of interval along 7 is at most n. For the reason that an intersecting family
A of interval along a fixed cyclic permutation 7 without element contained in more
than two other elements must contain an inclusion-free intersecting family . We
can obtain a boundary of the largest size of A by these results. On the basis of the
boundary, this article continues to explore the structure of the largest size of A and

determine its value.
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1 Introduction and a simple boundary

A cyclic permutation 7 of the elements of X = {z,...,2,} is an ordering of the
elements along a cycle. A set aC X is called interval(along 7) if its element are consecutive

along 7. A set aCX is called interval (along 7) if its element are consecutive along .
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For the poset P = {x,y,z} such that xCy and xCz. An intersecting family A of
interval along a fixed cyclic permutation m without element contained in more than two
other elements is actually a P — free intersecting family. Let A be the largest such family.
It is easy to found that when n < 2, |A| = n and when n = 3 or 4, |A| = n+ 1. So in this
report we talk about n>5. First, It is easy to found such family with size n + 1. Such as
{a : all the intervals with size n — 1}U{a : the intervals with size n}. So |A| >n + 1.

We divide A into two part. Let M€ A is the largest inclusion-free intersecting family
of A such that for each b € A/My, 3a € My, a Cb.

From the following lemma we can obtain a simple bound of | AJ.

Lemma 1.1. [I] IfV a € My, |a| < %, then |M4| < 3.

Proof. Denote |M4|=m. Since each two distinct elements of M4 must have different start
position, we can reperesent each element of M4 by its start position: My = {i1*, 2", ... i, "}
And let i,* = 1* be the shortest interval. Any point of 1* can serve at most once as a start-
ing point and once as endpoint. For the reason that for any be My,c€ Ma,|b|+|c|< n,
we cannot have a member b with endpoint j and a member ¢ with starting point j+1
(1 < |1*| — 1) simutaneously in 1*. So only one of such b and ¢ can exist. If 1* is included
we obtain [My| < [1*] < 3.

]

Theorem 1.2. n+ 1< |A| <2n, and Ja € A, |a] > 2.

Proof. For ¥ a € M, there exists at most one element b € A/M, such that a C b. So
|A/M,| < |My| and we can know that |A| < 2|My|. Form |A| > n+ 1 and lemma 1.1,

we know that there must exist a € A,|a| > 5. Since each two distinct elements of My

must have different start position, we claim that |Ma| < n.

[

2 Largest size and the way to construct

Theorem 2.1. When |Mu| =n |A| < [3n]

Proof. Since each two distinct elements of M4 must have different start position, we can
reperesent each element of M4 by its start position: My = {1*,2*,...,n*}. We claim
that Vi* € Ma, we have |i*| < |(i +1)"| (¢ mod n) [Unless the endpoint of (i +1)" is
i+ |(i4+1)"] <i—1+ |i*] (the right side of the inequality is the end point of i*), we get



(i4+1)" €] From |n*| < [1*] < 2% < ... < |n¥|, we get |1*]| = |2*] = ... = |n*| = k.
When k < 3 or k=mn —1 or k= n the result is trivial. We consider § <k <n — 1.

For Vb € A/My, 3i* C b, then at least one of (i —1)* and (i +1)* is subset of b, so
[A/Ma| < Pl = 2 wve get |A] < [ 3n]

O

Observation 1. For n > 5,we can always found a a P — free intersecting family A of
intervals with |A| = |3n]. For ezample A = {i* : |i*] = [2] + 1, i =1,2,...,n} U{i* :
i*| = |5] +2,iis even, i =1,2,...,n}.
Theorem 2.2. When |Ma| <n—1. If [Ma| =n—1 and n is odd, |A| < |3n]. Other-
wise |A] < |3n]

Proof. We denote|Ms| = m < n, Ma = {i1",i2", ... i}, 1 =13 <ig < -+ < iy < M.
When m < %n, |A| < %n, the result is trivial. We consider m > %n.

First we discuss the case i179%3 . .. %,,—1%,, are consecutive and then extend the result

to other cases.
If 4yigds . . . Gyp_1im are consecutive, My = {1%,2*,... m*}, then for Vb € A/ My, t* C b
but t —1* € b, t + 1* € b is possible only if

(the end point of t + 1)t + |t + 1| >t — 1 4 |t*|(the end point of t*) (2.1)

Let T' be the number of such t* among My, then|A/M4| < 5+ T.
By inequality 2.1

(the end point of m*)m —1+|m*| >m —1+[1"|+T (2.2)
(the end point of m*)m — 14 |m*| < n + |1*|(the end point of 17) (2.3)
=T<n—-m+1=T<n-—-m (2.4)

We get|A/Ma| < 5 +T <n—"3 and [A] < n+%. When m = n—1 and n is odd,
|A] < [2n]. Otherwise |A| < [$n].

We extend the result in the case that iyisis. . .7, _1i, are not consecutive. Observing
the permutation iy2923. .. %,_1%,, we can found that it is union of some segments and

m<n—1.

Assume the permutation is constructed by d segments: ij12j0.. . 0jm, 7 = 1,2,...,d.
Let i13=1 and ig4y,, < n. For each j = 1,2,....d, let |i;;| = k;, T; be the number
of elements t* among each B; = {i;1",ij2",...,ijm,"} has property 2.1. We get m =
my+mo+---+mg, T' =T, + 1T, +--- 4+ T, and inequality

ij1 — 1+ kj+m; —1 < (the end position of i¢ji1)1") (2.5)
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= ijl -1+ /Cj + m; — 1 < ’i(j+1)1 -2+ k'j+1 (26)

From calculation
th+inn—1+k+my—1<i9 —24 ks
b+t —14+k+m — 1<y —2+ ks
totigr —1+ky+me—1<i9—24k =t+m<n=1t<n—m

td‘i‘?:dl—l—'—kd‘i‘md—lSi11—2+l€1
We get [A/My| < B 4+T < n—-% and [A] < n+ 3. For m < n— 1, we have

Al < [3n] O

Corollary 2.3. |4 = [3n].
Theorem 2.4. Va € A, |a| > | 2] + 1.

Proof. we know |A| = |2n| and it can happen only if [M4| =n—1,n is odd or M| = n.
From the proof of theorem 2.1, when |M4| = n , the result is trivial.
For [M4s| = n — 1,n is odd, we denote My = {1*,2* ..., n— 1"} and |1*| < |2¥] <
s < n—= 1%, let |1 = k, we get
n—l+n—1<n+k—1 :{ In— 17| <k+1
if k<3, thenk+1—-1+k+1°">n—-k+1 lk+1"|>n—k+1
=n—k+1<k+1=2k>n=k>7%

When n is odd, there is a contradiction.
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