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Chapter 1

Introduction

1.1 p-adic numbers and the metric formulation on

Q

Definition 1. A norm or valuation of a field F is a map ∥.∥ : F → R+ ∪ {0} that

satisfies

• ∥x∥ = 0 iff x = 0

• ∥xy∥ = ∥x∥∥y∥

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (Triangle Inequality)

The pair (F, ∥.∥) is called a valued field.

We can use norms to induce metric by setting

d(x, y) = ∥x− y∥

The usual absolute value is a norm on Q with the usual distance metric induced by

the absolute value norm. We try to construct a new norm in the following way:

Let p be a prime number and for each x ∈ Q we write x in the following way

x = pvp(x)x1

where vp is the highest power of p dividing x and x1 is a rational number co-prime

to p. We now define a norm on Q given by

∥x∥p = p−vp(x) (1.1)
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1. Introduction

It is easy to check that such a definition satisfies the properties in accordance with

the definition above.

1.2 Ultrametric(The Strong Triangle Inequality)

We observe that our definition in Eqn.(1.1) satisfies a much stronger condition

than triangle inequality

∥x+ y∥p ≤ max(∥x∥p, ∥y∥p)

A simple example of a valuation that satisfies a similar criterion is the following

For a non-zero polynomial f ∈ R[X] given by

f = a0 + a1x+ a2x
2 + . . . anX

n

deg(f) = n and deg(f) = −∞ if f is the zero polynomial.

We observe that this satisfies the valuation as well as the ultrametric property

and valuation. Except for the fact here it is no more a valuation field but more of a

valuation ring.

The definition of the metric given above in (1.1) is the p−adic metric and will

be denoted by |.|p in future. We now state a strong characterisation theorem due to

Ostrowski in 1918. We first start by defining what we mean by equivalent metrics,

Definition 2. Two metrics d1 and d2 on the same set are said to be equivalent if

they induce the same topology on the set.

1.3 The Theorem of Ostrowski and Metric over Qp

We now proceed to state the theorem we were building up on,

Theorem 1 (Ostrowski, 1918). Every non-trivial norm ∥.∥ on Q is equivalent to

|.|p for some prime p or the usual absolute value.

Given a field F with norm ∥.∥, let R be the set of all sequences with {an}∞n=1,

an ∈ F, which are Cauchy with respect to the given norm. Then we can define

{an}∞n=1 + {bn}∞n=1 = {an + bn}∞n=1

{an}∞n=1 × {bn}∞n=1 = {an × bn}∞n=1
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1. Introduction

Thus (R,+,×) is a commutative ring. Moreover, the set M of all Cauchy sequences

converging to zero is a maximal ideal, and hence R
M is a field.

We can embed F in R via the natural map a → (a, a, a, . . . ), which is clearly

a Cauchy Sequence. We can therefore view F as a subfield of R
M . R

M is called the

completion of the field F with respect to the given norm. In the case F = Q when

our norm is usual norm, our completion is the set of real numbers R. On the other

hand if F = Q, and the metric is ∥.∥p, the completion is Qp, of p-adic numbers.

We can extend the norm on Qp as follows, given any equivalence class of sequences

a = {an}∞n=1 in Qp, we can see that {|an|p}∞n=1 is a Cauchy sequence in R and as

reals are complete we have a limit and let it be a so that

a = limn→∞|an|p

We can easily check that the above is well-defined, and moreover Qp is complete

in |.|p. Indeed, let {a(j)}∞j=1, be a Cauchy sequence of equivalence classes in Qp, we

must show that there is a Cauchy sequence to which it converges. To achieve this

we observe that Q is dense in Qp. Thus we can find a rational number (j) so that

limn→∞|a(j) − λ(j)|p = 0

and this implies what we needed to complete our assertion.
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Chapter 2

Geometry, Arithmetic in Qp and the

Hensel’s Lemma

2.1 The interesting Geometry of Qp

The field Qp, has interesting geometry induced to it by the metric topology.

We recall from the last chapter that our metric induces a so called "ultrametric

topology" on Q. Two of the very famous observations are

Theorem 2. All triangles in ultrametric spaces are isoceles.

This in the first sense quite counter-intuitive, but the proof can be observed easily

by considering the metrics over the valuations, and going on routine calculations and

observations.

For non-archimedean valuations, an interesting observation in terms on topology

is the following,

Theorem 3. Let K be a with a non-archimedean absolute valuation. Then we have

the following,

• Every point that is present in an open(closed) ball, is the center of the ball.

• All balls are both open or closed.

• Any two open balls are either disjoint or contained in one-another.

• K is a totally disconnected topological space.
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2. Geometry, Arithmetic in Qp and the Hensel’s Lemma

2.2 Arithmetic in Qp and the Hensel’s Lemma

The mechanics of addition, subtraction, multiplication and long division in Qp

is similar to elementary school arithmetic methods, except for the fact that the

"carrying" and "borrowing" goes from left to right rather than right to left.

Although however, an important aspect is to find roots of polynomials in Qp.

This is indeed the most useful method to find out existence of nth roots of number

in the field. It is tackled by a well know result stated below,

Theorem 4 (Hensel’s Lemma). Let F (x) = c0+c1x+c2x
2+· · ·+cnx

n be a polynomial

whose coefficients are p-adic integers. Denote F ′(x) to be the natural derivative of

F . Let a0 be the p-adic integer such that F (a0) ≡ 0 (mod p) and F ′(a0) ̸≡ 0 (mod p).

Then there exists a unique p-adic integer a such that

F (a) = 0 and a ≡ a0 (mod p)

We discuss a special case where we investigate the existence of
√
6 in Q5. For

that we consider the polynomial

F (x) = x2 − 6 and F ′(x) = 2x

and we let a0 = 1, 4(as these are the only possibilities). And we see our unique in

the respective cases are 4, 1.
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Chapter 3

p-adic interpolation of the zeta

function

The aim of this chapter to establish the so called p-adic continuity for the ζ

values at even integers.

Definition 3. The Riemann ζ-function is defined by the Dirichlet Series for Re(s) >

1

ζ(s) =
∞∑
n=1

1

ns

We fix a prime p. Let us consider the set of numbers

f(2k) = (1− p2k−1)
ck
π2k

ζ(2k), where ck = (−1)k (2k − 1)!

22k−1

as 2k runs through all positive even integers in the same congruence class mod(p−1).

It turns out that f(2k) is always a rational number. Moreover if two such numbers

are p-adically close(i.e their difference is divisible by a large power of p), then we

shall see that ther corresponding f(2k) is also p-adically closed. This means we

can uniquely extend f from integers to p-adic integers and the resulting function is

continuous in Qp, which essentially is what I meant by p-adic interpolation.

7



3. p-adic interpolation of the zeta function

3.1 A formulae for ζ(2k)

Definition 4. The kth Bernoulli number denoted by Bk, is defined as k! times the

kth coefficient of the Taylor expansion of the function

t

et − 1

That is to say t
et−1

= 1

1+
∑∞

k=1
tk

(k+1)!

=
∑∞

k=0Bkx
k

Our main aim is to derive the formulae

ζ(2k) = (−1)k(π)2k 22k−1

2k − 1
(−B2k

2k
)

Theorem 5. For all x ∈ R, the infinite product

πx
∞∏
n=1

(1 +
x2

n2
)

converges and equals to sinh(x).

The proof follows easily from logarithmic test.

Theorem 6. Let n = 2k + 1 be an odd positive integer, then we can write

sin(nx) = Pn(sinx)

cos(nx) = cosxQn−1(sinx)

where Pn and Qn are polynomials of degree n.

The proof readily follows from induction. Using the above two lemmas we can

now prove our main result.

3.2 p-adic Interpolation ζ(s) function(Construction

of Kubota-Leopoldt L-functions)

We now try to interpolate the zeta function. The naive way to interpolate ζ(s), p-

adically is to interpolate through each term individually and then add out the result.

Unfortunately this fails to work because even the terms which can be interpolated,

those for which p does not divide n forms an infinite divergent sum in Zp.
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3. p-adic interpolation of the zeta function

We can artificially remove the terms 1
ns , with n divisible by p,

ζ(s) =
∞∑

n=1,p ̸|n

1

ns
+

∑
n=1,p|n

1

ns

=
∞∑

n=1,p ̸|n

1

ns
+
∑
n=1

1

psns

=
∑

n=1,p ̸|n

1

ns
+

1

ps
ζ(s)

=⇒ ζ(s) =
1

1− (1/ps)

∑
n=1,p ̸|n

1

ns

To evaluate the last term, we use the popular identity

ζ(s) =
∏
p

1

(1− p−s)

Thus multiplying by ζ(s) amounts to removing the p-Euler factors and hence we get

the relation
ζ∗(s) =

∑
n=1,p ̸|n

1

ns
=

∏
p

1

(1− p−s)
ζ(s)

The next thing we want to do is fix s0 ∈ {0, 1, 2, . . . , p − 1} and only let s vary

over non-negative integers s ∈ {s|s ≡ s0 (mod (p− 1))} = Ss0 . As a result we get

the numbers we saw previously as (−B2k

2k
), when multiplied by (1 − p2k−1), can be

interpolated for 2k ∈ S2s0 .

More precisely it can be seen that, if 2k, 2k′ ∈ S2k0 , and if k ≡ k′ (mod pN) then,

(1− p2k−1)(−B2k

2k
) ≡ (1− p2k

′−1)(−B2k′

2k′ ) (mod pN+1)

These congruences were observed by Kummer a long time ago, but the p-adic foun-

dations using the interpolation of zeta functions was laid much later by Kubota and

Leopoldt.
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Chapter 4

p-adic measures, distributions and

Iwasawa Algebras

4.1 Power series rings and p-adic measures

Let K/Qp be a finite extension. Let OK be the valuation ring of K and let π be

a uniformizer of OK . Let k = OK/(π) be the residue field of OK which is a finite

extension of Zp/pZp
∼= Fp.

Our main goal in this chapter is to understand the following diagram(diagram

4.1).

To begin with, we state some basic properties of power series ring,

Theorem 7 (Division Lemma). Suppose f = a0 + a1T + · · · ∈ OK [|T |], but π ̸ |f ,

i.e, f ̸∈ OK [|T |]. Let n = min{i : ai ̸∈ (π)}. Then any g ∈ OK [|T |] can be uniquely

Figure 4.1: Relationship diagram between power series rings, p-adic measures and
Iwasawa Algebra
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4. p-adic measures, distributions and Iwasawa Algebras

written as q = qf + r where q ∈ OK [|T |], and r ∈ OK [T ] is a polynomial of degree

atmost n− 1.

We have an important note,

Note. If π ̸ |f ∈ OK [|T |], then OK [|T |]/(f) is a free OK module of rank n = {inf i :

ai ̸∈ (π)}, with the basis {T i|i < n}.

Definition 5. A distinguished polynomial F (T ) ∈ OK [T ] is a polynomial of the

form
F (T ) = T n + an−1T

n−1 + . . . a0, ai ∈ (π)

Remark. We allow π2|a0 as to avoid for any irreducibility case due to Eisenstein

criterion.

We now towards a major important theorem of this chapter,

Theorem 8 (p-adic Weirestrass Preparation Theorem). Let f ∈ OK [|T |], then f

can be uniquely written as
f = πµP (T )U(T )

is a distinguished polynomial of degree n = {inf i : ordπ(ai) = µ}, U(T ) is unit in

OK [|T |]. As a consequence, OK [|T |] is a factorial domain.

We omit the proof of this theorem, but I would like to mention that this theorem

is as a consequence of the Division Lemma we proved before. However an important

remark related to this.

Remark. For π ̸ |f , we have as a consequence

OK [|T |]/(f(T )) ∼= OK [|T |]/(P (T ))

Thus P (T ) is the characteristic polynomial of the linear transformation T :

OK [|T |]/(f)→ OK [|T |]/(f).

An important thing to note,

Note. Let f(T ) ∈ OK [|T |], be non-zero. Then there can only be finitely many x ∈ Cp,

|x| < 1 with f(x) = 0.

Another important note is the following,

Note. Let P (T ) be the distinguished polynomial. If g(T )
P (T )

∈ OK [|T |], g(T ) ∈ OK [T ]

then g(T ) ∈ OK [T ].

We are now in a position to arrive at Iwasawa Algebras.
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4. p-adic measures, distributions and Iwasawa Algebras

4.2 Iwasawa Algebras

Let Γ = Zp = lim←−Z/pnZ, where the inverse limit is taken on n, where Γ is

compact and pro-cyclic as a profinite group. Let γ be a topological generator of Γ

and hence Γ =< γ̄ >. Let Γn be generated by γpn , and this be the unique closed

group of index pn of Γ, then Γ/Γn, is cyclic of order pn generated by r + Γn. One

has isomorphism

OK [Γ/Γn] ∼= OK [Γ]/((1 + T )p
n − 1)

γn mod Γn → (1 + T ) mod ((1 + T )p
n − 1)

Moreover, if m ≥ n ≥ 0, the natural map of Γ/Γm → Γ/Γn induces a natural map,

ϕm,n : OK [Γ/Γm]→ OK [Γ/Γn]

We let
OK [|Γ|] = lim←−OK [Γ/Γn] = lim←−OK [Γ]/((1 + T )p

n − 1)

where the limits are taken on n.

We finally note that OK is a topological ring which is compact and complete

with the π-adic topology, so are OK [Γ/Γn] and thus OK [|Γ|] is the endowed with

the product topology of π-adic topology. It is also compact and complete in this

topology.

Definition 6.
Λ = Λ(Γ) = OK [|Γ|]

is defined to be the Iwasawa Algebra on Γ

We complete this section by stating an important theorem,

Theorem 9. One has a topological isomorphism

OK [||T |] ∼= OK [|Γ|]
T → γ − 1

where OK [|T |] is the compact topological ring complete with π-adic topology.

We omit the proof of this theorem, as this can be established by induction.
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4. p-adic measures, distributions and Iwasawa Algebras

4.3 p-adic measures

We begin with a useful result.

Theorem 10. Any compact subset of Qp, can be expressed as a finite disjoint union

of intervals a+ pNZp = {x ∈ Qp : |x− a|p ≤ 1
pN
}

The proof of this theorem follows by a direct application of compactness defini-

tion.

Definition 7. • Let X be a compact open subset of Qp. A p-adic distribution

µ on X, is an additive map from the compact open set in X to Qp, i.e if U

is compact open in X and is a finite disjoint union of compact open subsets

{Ui}ni=1 then

µ(U) =
n∑

i=1

Ui

• A p-adic distribution µ on X is called a measure if there exists a positive real

number M , such that |µ(U)| ≤M for all compact open sets in U in X.

Theorem 11. Let µ be a map from the set of compact open subsets in X, to Qp

such that

µ(a+ pN) =

p−1∑
b=0

µ(a+ bpN + PN+1)

for any interval a + pN in X. Then µ extends uniquely to a p-adic distribution in

X.

We end the discussion by stating that there are indeed various types of mea-

sures, the Haar distribution, The Mazur distribution and the Bernoulli distribution,

specifics of which will be discussed in detail later.
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Chapter 5

Conclusion

The idea behind this project is to the study on methods on Modern Number

Theory. Much of modern number theory is dedicated to understand the structure of

the Galois group,
GQ = Gal(Q̄/Q)

or in general if we replace Q by any number field K. This actually formally paves

the way to the study of Local and Global Class Field Theory which will be covered

in the final presentation on the topic. The text studied some formal methods of

advancements in the direction of Number Theory, and much of the current research

is based on these methods applied over and over again. Finally I would like to

conclude with two quotes by famous mathematicians Gauss and Erdos,

"Mathematics is the Queen of all Sciences and Number Theory is the Queen of

Mathematics" - C.F Gauss

"If numbers aren’t beautiful then what is" - Paul Erdos
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