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We begin with a little bit of history in order to spark up the interest
+ In the year of 1897, Hensel came up with the concept of p-adic numbers.

+ Aformalisation was done by Ostrowski, and he classified the norm on Q. His
theorem, upgraded the view of p-adic’'s from a mere subset of rationals to a subset
of topological spectrum over rationals.

« In the later part of 20" century a much more wider spectrum from Kubota and
Leopoldt was established bringing out it's importance in number theory.

+ Formally, given a prime number p, a p-adic number can be defined as a series (for

k€ Zand0 < a; < p)
o
i=k



Introduction to p-adic

numbers

Motivation, An overview of p-
adic numbers and metric formu-

lation on Q and Q,




Motivation

We use two different directions to motivate us to go into p-adic numbers,




Motivation

We use two different directions to motivate us to go into p-adic numbers,

+ Solving Polynomial Equations.




Motivation

We use two different directions to motivate us to go into p-adic numbers,
+ Solving Polynomial Equations.

« Completing the number system i.e, finding limits to all Cauchy Sequences.




Motivation

We use two different directions to motivate us to go into p-adic numbers,
+ Solving Polynomial Equations.
« Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of R,




Motivation

We use two different directions to motivate us to go into p-adic numbers,

+ Solving Polynomial Equations.
« Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of R,

Solving Equations

Linear Equations
x+a=0ax=Dh

Quadratic Equations
¥’ —a=0




Motivation

We use two different directions to motivate us to go into p-adic numbers,

+ Solving Polynomial Equations.

« Completing the number system i.e, finding limits to all Cauchy Sequences.
Let us recall the construction of R,

Solving Equations

Linear Equations
x+a=0,ax=0»~b

Quadratic Equations

¥ —a=0
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Motivation (Contd.....)

+ But still we are not done. Going by approach of algebraically closeness we still
don't have answer to x? + 2 = 0.
+ So we define C = {a + ib|a, b € R}, and by fundamental theorem of algebra C is
algebraically closed.
+ We also see that with respect to C is also closed with respect to the norm,
la + ib| = a® + 2.
As aresult C is our finish point.
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Introduction (Contd......)

« The usual absolute value is a norm on Q with the usual distance metric induced by
the absolute value norm.

+ We try to construct a new norm in the following way:
Let p be a prime number and for each x € QQ we write x in the following way

X = pvp(x)xl

where v, is the highest power of p dividing x and x1 is a rational number co-prime
top.
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The Ultrametric Property

+ One says that a valuation satisfies the ultrametric property, if it also satisfies the
property,
[ +y| < max(|x], ly])
For example:

Defining the metric

Let p be any real number.
We can now define the
metric on R[X]

o r=o0
- {/f“f) f#0
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d(x,y) = |x = ylp
+ We can check that this does satisfies the property of metrics.

+ We also have a stronger property than triangle inequality,
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The Geometry

* The structure of Q,, becomes interesting and counter-intuitive in some eyes.
+ One can show that all triangles in this system are isoceles.

+ Yet another interesting property, lies with topological concepts of open and closed
balls




Arithmeticin Q,

The general arithmetic in @, is very usual as in our normal arithmetic except for the
fact that, "carrying”, "borrowing” and "long multiplication” go from left to right, rather
than right to left.

346 xT7T+2xT7+---
X44+5xT+1xT7>+--.
544xT7T+4x72+---
I x74+4x7+--.
Ix7?+---
5+5x7+4x7+---

Figure: Arithmetic in Q,
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Finding n'" roots in Q,

« Arather interesting topic is to find n™" roots in Qp.
+ For example /6 in Qs is given by,

V6=1+3x54+0x52+4x5+...

+ In general our method, is based as follows, let
ap+ a1 X 5+as x 52 4+as x 5% + ... bethe square root. Then we have,

(ao+a1><5+a2><52+a3><53+...)2:1+1><5

+ Comparing the coefficients(modulo 5) on both sides we get the result.



Hensel's Lemma

+ The above method is placed as a generalised lemma formulated by Hensel.

+ For our case with 6 and Q5, we have F(x) = x> — 6, F/(x) = 2xand ag = 1.
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Setup and Introduction

* Let K/Q, be a finite extension.

* Let Ok be the valuation K and 7 be the uniformizer of Og.

* Letk = Ok/(m) be the residue field of Ok, which is finite extension of Z, /pZ, ~ I,
Our main goal of this chapter is to understand the following,

%z, \TV]
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Power Series Ring in p-adics

We begin with an important lemma,

Division Lemma
Suppose
f=ao+a1T+aT? +--- € O[|T]]

butw ff,i.e, f& Ok[|T|]. Let n = min{i: a; ¢ (7w)}. Then any g € Ok|[|T]|] can be uniquely
written as ¢ = gf + r where g € Ok][|T]|], and r € Ok[T] is a polynomial of degree atmost
n—1.

« If © Jf € Ok[|T]], then Ok[|T|]/(f) is a free Ox module of rank n = {inf i: a; & (1)},
with the basis {T'|i < n}.



Power Series Ring in p-adics

+ We define the notion of a distinguished polynomial,
Distinguished Polynomial
A distinguished polynomial F(T) € Ok[T] is a polynomial of the form
FT)=T"+a, 1T ' +.. . ayp, a;€(m)

+ We allow 72|aq as to avoid for any irreducibility case due to Eisenstein criterion.

+ An important implication from the theorem is, if F is a distinguished polynomial,
then

O [T]/rOk[T] ~ Ok|| T|]/rOxk]| T|]



Power Series Ring in p-adics

+ We begin with a rather important theorem,

p-adic Weirestrass Preperation Theorem
Let f € Ok[|T|], then fcan be uniquely written as

f=m"P(T)U(T)

is a distinguished polynomial of degree n = {inf i : ord,(a;) = p}, U(T) is unitin
Ok|[|T]]. As a consequence, Ok[|T|] is a factorial domain.

+ As an important corollary, Let f{(T) € Ox[|T
finitely many x € Cp, |x| < 1 with f{x) = 0.

|, be non-zero. Then there can only be




Iwasawa Algebras - The Setup

+ The theory of commutative lwasawa algebras were first introduced by the
Japanese mathematician Kenkichi lwasawa.

s Letl' =7Z, = LiLnZ/p”Z, where the inverse limit is taken on n, where I" is compact
and pro-cyclic as a profinite group.

+ Let v be a topological generator of I' and hence I' =< 7 >.

« LetT', be generated by 4#", and this be the unique closed group of index p” of T,
then I'/T",, is cyclic of order p" generated by r + T,



Iwasawa Algebras - The Setup

+ One has isomorphism

Ox[T/Ts] = Ok[T]/(1+ )" —1)
v mod T, — (1+7T) mod ((1+Ty —1)

+ Moreover, if m > n > 0, the natural map of I'/T",, — I'/T’,, induces a natural map,
¢m,n : OK[F/Fm] - OK[F/F”]

+ We let
Ok[|T|] = lim Ox[T"/T] = 1im O[T]/((1 + T)"" — 1)

where the limits are taken on n.



Iwasawa Algebras - The Setup

« We finally note that O is a topological ring which is compact and complete with
the m-adic topology, so are Ok[I'/T';] and thus Ok][|I'|] is the endowed with the
product topology of m-adic topology. It is also compact and complete in this

topology.
+ We are now in a position to define what Iwasawa Algebras are,

Iwasawa Algebras
A = A(T) = Ok[|T']]

is called the lwasawa Algebra over I'.




Iwasawa Algebra

+ An important thing to note is that,

Iwasawa Algebra on Profinite Group
Let G be a profinite abelian group, then lwasawa algebra over G is given by,

I'(G) = lim Ok[G/H]|

when limit is taken over all H<« G.

+ In fact we are able to identify the rings Ok[|T'|] and Ok[|T]].

Oll[Tl] = Ok[|T']
T — ~v—1



p-adic measures

+ We begin with an important lemma,

Lemma

Any compact subset of (Q,, can be expressed as a finite disjoint union of intervals
a+pVZ,={x€Qp:lx—al, < pi,\,}




p-adic distributions

p-adic distribution

Let X be a compact open subset of Q,. A p-adic distribution x on X, is an additive
map from the compact open set in X to Q,, i.e if Uis compact open in Xand is a
finite disjoint union of compact open subsets {U;}?_; then

A p-adic distribution p on X 'is called a measure if there exists a positive real
number M, such that | (U)| < M for all compact open sets in Uin X.

48



p-adic distributions

« An important result in this direction is the following,

Theorem
Let 1 be a map from the set of compact open subsets in X, to Q, such that

p—1
pla+p") =D pla+bp" + PV
b=0

for any interval a + p" in X. Then u extends uniquely to a p-adic distribution in X.




Interpolation and related
results

Zeta function, p-adic interpola-
tion of the zeta function, Kubota-
Leopoldt constructions for p-
adic analougues of zeta func-
tion, Kummer's congruence




The ( function

+ The Riemann-zeta function is defined as a function on s € C by
=1 1
)= ol [1a- E)_l
n=1 )/

* The above series converges absolutely for Re(s) > 1.

+ We can also show that it has a meromorphic continuation to all of C with a simple
pole ats = —1.



The I" function

+ For s € C the gamma function is defined as

F(s):/ e_tt‘ﬂ
0 t

« We have I'(s + 1) = sT'(s) for all Re(s) > 0
«I'(n)=(n—1)!

* Using the fact that I'(s + 1) = sI'(s), we can extended it meromorphically to with
simple poles at all negative integers.



Connecting ¢ and I" functions

+ We let,
Als) =m720(5)C)
+ We observe by a simple computation that,
A(s) =A(1 —5)

for all s € C with Re(s) > 1.

+ And as a consequence one gets that ¢, can be extended analytically onto C, with a
simple pole at s = 1, with residue 1.



Mellin Transform

Mellin Transform

Letg : R-o — C, be a function of rapid decay (i.e |¢(¢)| << ¢, N > 0), then the Mellin
transform of g is given by

o (at
g0t v
Jo

We define the L-function as follows,

L(fs) = FzS)M(f)

for a function f: Rs¢ — C, be a function of rapid decay



Connecting the ( and [ (contd...)

An useful proposition

L(f; s) converges and is holomorphic function for Re(s) > 0 and hans an analytic
continuation to the whole of C and




Connecting the ( and [ (contd...)

We now recall what Bernoulli numbers are,

+ For our fas above we have

(s—1)¢(s) = L(F,s—1)



Connecting the ( and [ (contd...)

An important Corollary

- B
Forn > 0, we have ((—n) = — "5

¢((—n) =0, when n > 2is an even integer.

For k > 0, we have ((2k) = (71)76_13(7;),;]132;3.




The p-adic analogue of the (-function

« From our previous results, the p-adic analogue can be constructed in two ways

* First way:
We observe that the set {—n : n € Z~(} is dense in Z,. We can exploit this fact
and hope thatif 1 —nand 1 — m are so called p-adically close, then so is —% and
—%’" and hence would allow us to build the p-adic analogue via interpolation via
measure. This is the method of Kubota-Leopoldt and Mazur.

+ Second way:
A much more direct method is to directly give a explicit formulae of p-adic
L-function, which agrees with ((s) at almost all places except some modification at
the negative integers. Such a construction was given by Washington.



The Kubota-Leopoldt construction

59



The Kubota-Leopoldt construction (Contd.....)

We have two observations
* [k« is @ p-adic measure.
* Let dj, = least common denominator of the coefficient of By (x), then

drpina(a+ p"Zy) = dpka* ' 111 o(a +p"Z,) (mod p")

An important theorem
If f: Z, — Qp is a continuous function, then

JRCITE / S o ()




* If p|n then f(s) = n’, does not extend to a continuous function of a p-adic variable,
hence our naive approach won't work.
+ We instead consider a much more constructive approach to get around it.

+ We define:

Ay, ={s€Z=o:5=s59 mod p}



The Kubota-Leopoldt construction (Contd.....)

+ We consider the natural embedding

Ay — ——— X1,




An Important Lemma

If p fn, then f(s) = n’ extends to a continuous analytic function on

+ So this suggest to shrink our domain to (Z,)*.

* One can check this is well-defined



The Kubota-Leopoldt construction (Contd.....)

+ With a little manipulation, we can observe that,

By,

G —k) = (1—p ) = 2t

+ We are almost done except the continuity, which can achieved by the Kummer's
congruences,




Kubota-Leoplodt p-adic L functions

We end our discussion with the Kubota-Leopoldt p-adic L functions.

Kubota-Leopoldt p-adic L functions
Forany o € Z, a # 1 and p fa and for a fixed integer sop € {0,1,2,...,p — 2}, then

~ . 1 so+(p—1)s—1
Cpso = o Gor 1) 1 -/(Zp)’ X dp o

for any p-adic integer s except at s = 0, in case of sp = 0.




Washington’s Construction

Let x be a Dirichlet character of conductor f, and let F be some multiple of g and f.

Ly ww<as (M) mdy

a=1, pl4 j=0

Ly(s,x) =



Conclusion (Local and
Global Class Field Theory)

Investigating into Local and
Global Class Field Theories,
Statement of the Iwasawa Main
Conjecture



Summary of Local and Global Class Field Theory

+ We have seen existence of a power series g(T) € Z,[|T|] (from the analytic side).
+ Now we try to construct a similar set up from the algebraic set side.

+ Our main goal in modern number theory is to study Gg = Gal(Q/Q) or the same
for any number field K.

+ Standard method for gaining insight into the structure of Gk, on arithmetic objects
related to K(Galois representations).

+ Class Field Theory describes G =max abelian quotient of Gk as a first step
towards the understanding of Gg.



Summary of Local and Global Class Field Theory

+ We know that for each integer m > 1, the cyclotomic extension Q(¢,)/Q is an
abelian extension with Galois group G = Gal(Q((n)/Q) = (Z/mZ)*.

+ So we get a simple process to construct abelian extensions of Q. We pick m > 1
and take any subfield of Q((p).

* Aremarkable result would in this direction is the Kronecker Weber theorem in
1853.

Kronecker Weber Theorem (Global)
Every finite abelian extension of Q lies in Q({n).




Summary of Local and Global Class Field Theory

Kronecker Weber Theorem (Local)

Every finite abelian extension of Q, lies in Q,({n).

+ An interesting proposition is that, the global theorem is true iff the local theorem
is true.

* Also if we let, K/Q, be a cyclic extension of I', for some prime [ # p, then
K C Qu(¢p) for some m € Z>y.

+ If we let/ = p as above, then too it holds similarly, but the approach to proofis
different.



Summary of Local and Global Class Field Theory

+ Our main approach is to provide an analogue of the Kronecker-Weber theorem
for any general number field.

+ We head to the more general theorem,



Summary of Local and Global Class Field Theory

Local Class Field Theory

Let K/Q, be a finite extension, then there exists an unique isomorphism

<,0:KAX—>G?(I’

(called local Artin map), with the following propositions,

for any uniformizer 7 of K, restriction of ¢(7) to the maximal unramified
extension of K is the Frobenius element.

for any finite abelian extension L/K, we have an isomorphism,

K* /Ny jk(L*) = Gal(L/K)

72



Summary of Local and Global Class Field Theory

« Aremarkable consequence of the Local Class Field Theory is as follows:
if p and g are two primes such thatp = ¢ (mod n) = Frob, = Frob, in
Gal(Q(¢,)/Q) and conversely.

+ Now the Global Kronecker Weber Theory implies that a similar thing holds for any
abelian extension of Q, i.e if K/Q is finite abelian, then there exists n such that
Frob, = Frob,, wheneverp = ¢ (mod n).

+ This statement helps us get moving towards the global Class Field Theory.



Summary of Local and Global Class Field Theory

The Global Class Field Theory

(Reciprocity) L /K finite abelian and let S =set of primes of K ramifying in L, then
there exists a modulus m of K, prime to S, such that the Artin map induces a
surjection

cm — Gal(L/K)

Moreover it induces an isomorphism,

F/(i(K™").Ny e I}) — Gal(L/K)

(Existence) Given any modulus n of K there exists an abelian extension K, /K (also
known as the Ray Class Field), the Artin map induces an isomorphism.
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THANK YOU

| thank everyone for their valu-
able attention!



