Communication complexity problem

Advisor: Hegyvári Norbert

Kovács Fruzsina

2023/2024/I.

Background of the problem: Communication complexity

- Communication complexity

The quantity of a form of communication to solve a certain problem, with an input between more than one parties (introduced by A. Yao 1959). The communication problem usually runs around more participants, to whom each belongs an n-bit long information.

Background of the problem: Communication complexity

- Communication complexity

The quantity of a form of communication to solve a certain problem, with an input between more than one parties (introduced by A. Yao 1959). The communication problem usually runs around more participants, to whom each belongs an n-bit long information.

- Log-rank conjecture

One of the main conjecture in connection with complexity, which states a polinomial connection between the function of a two-party communication complexity problem and the rank of its input matrix.

Background of the problem: Communication complexity

- Communication complexity

The quantity of a form of communication to solve a certain problem, with an input between more than one parties (introduced by A. Yao 1959). The communication problem usually runs around more participants, to whom each belongs an n-bit long information.

- Log-rank conjecture

One of the main conjecture in connection with complexity, which states a polinomial connection between the function of a two-party communication complexity problem and the rank of its input matrix.

- There is a close link between theoretical computer science and arithmetic, additive combinatorics can act as a useful tool.

Communication complexity

Definition (Complexity)

In case of a two-party communication problem:
$S(f):=\min _{\text {all protocols }} \max _{x, y}\{$ numbers of bits exchanged by the protocol on $x ; y\}$

- The definition of complexity is similar even if the number of participants is more than two.

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z
- Number-on-forehead model:

A knows: x, y
B knows: y, z
C knows: x, z

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z
- Number-on-forehead model:

> A knows: x, y
> B knows: y, z
> C knows: x, z

- $F:[n]^{3} \rightarrow\{0 ; 1\}$ where $F(x, y, z)=1$ if $x+y+z=n$ and 0 otherwise for a given $n \in \mathbb{N}^{+}$

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z
- Number-on-forehead model:

$$
\text { A knows: } x, y
$$

B knows: y, z
C knows: x, z

- $F:[n]^{3} \rightarrow\{0 ; 1\}$ where $F(x, y, z)=1$ if $x+y+z=n$ and 0 otherwise for a given $n \in \mathbb{N}^{+}$
- Algorithm to solve the $n=x+y+z$ equation with the least possible complexity

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z
- Number-on-forehead model:

> A knows: x, y
> B knows: y, z
> C knows: x, z

- $F:[n]^{3} \rightarrow\{0 ; 1\}$ where $F(x, y, z)=1$ if $x+y+z=n$ and 0 otherwise for a given $n \in \mathbb{N}^{+}$
- Algorithm to solve the $n=x+y+z$ equation with the least possible complexity
- Complexity of the trivial solution: the length of x (in bits): $\log _{2} x<\log _{2}(n-2)$

Definition of the problem

- Three-party communication problem with players A, B and C with the inputs x, y and z
- Number-on-forehead model:

A knows: x, y
B knows: y, z
C knows: x, z

- $F:[n]^{3} \rightarrow\{0 ; 1\}$ where $F(x, y, z)=1$ if $x+y+z=n$ and 0 otherwise for a given $n \in \mathbb{N}^{+}$
- Algorithm to solve the $n=x+y+z$ equation with the least possible complexity
- Complexity of the trivial solution: the length of x (in bits): $\log _{2} x<\log _{2}(n-2)$
- Complexity of a random process: logarithmic in the input size, at most a $\log \log (\mathrm{n})$ communication.

Deterministic Protocol

- Method of coloring integers from 1 to n, as colors can be calculated by the players, but the complexity decreases

Deterministic Protocol

- Method of coloring integers from 1 to n, as colors can be calculated by the players, but the complexity decreases
- k : the number of the used color class

Deterministic Protocol

- Method of coloring integers from 1 to n, as colors can be calculated by the players, but the complexity decreases
- k : the number of the used color class
- 3-AP-free: each color class is free from a three-term arithmetic progression

Deterministic Protocol

- Method of coloring integers from 1 to n, as colors can be calculated by the players, but the complexity decreases
- k : the number of the used color class
- 3-AP-free: each color class is free from a three-term arithmetic progression
- difference in the AP:

$$
d:=n-(x+y+z)
$$

Deterministic Protocol

- Method of coloring integers from 1 to n, as colors can be calculated by the players, but the complexity decreases
- k : the number of the used color class
- 3-AP-free: each color class is free from a three-term arithmetic progression
- difference in the AP:

$$
d:=n-(x+y+z)
$$

- Calculations:

A: $2 x+y$
C: $2 x+y+d=2 x+y+n-x-y-z=n+x-z$
B: $2 x+y+2 d=(n+x-z)+d=x-z+n+n-x-y=2 n-2 z-y$

$$
d=0 \Leftrightarrow \text { all of the three sent colors are the same }
$$

Sketch of the coloring

Theorem (Behrend)

One can color the set $[n]$ with $2^{O(\sqrt{\log n)}}$ colors with no monochromatic three-term arithmetic progression.

- We can overestimate the complexity from the number of the possible 3-AP-free colorings

Sketch of the coloring

Theorem (Behrend)

One can color the set $[n]$ with $2^{O(\sqrt{\log n)}}$ colors with no monochromatic three-term arithmetic progression.

- We can overestimate the complexity from the number of the possible 3-AP-free colorings
- Two parameters d, r and writing each number in base $(2 d+1)$

Sketch of the coloring

Theorem (Behrend)

One can color the set $[n]$ with $2^{O(\sqrt{\log n)}}$ colors with no monochromatic three-term arithmetic progression.

- We can overestimate the complexity from the number of the possible 3-AP-free colorings
- Two parameters d, r and writing each number in base $(2 d+1)$
- For every $x \in[n]$

$$
x=x_{0}+x_{1}(2 d+1)+\ldots x_{j}(2 d+1)^{j}+\ldots x_{r}(2 d+1)^{r},
$$

where $x_{j} \in[d], j=1,2, \ldots r$

Sketch of the coloring

Theorem (Behrend)

One can color the set $[n]$ with $2^{O(\sqrt{\log n})}$ colors with no monochromatic three-term arithmetic progression.

- We can overestimate the complexity from the number of the possible 3-AP-free colorings
- Two parameters d, r and writing each number in base $(2 d+1)$
- For every $x \in[n]$

$$
x=x_{0}+x_{1}(2 d+1)+\ldots x_{j}(2 d+1)^{j}+\ldots x_{r}(2 d+1)^{r}
$$

where $x_{j} \in[d], j=1,2, \ldots r$

- For each x there is a one-to-one map to v, where $v=\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{N}^{r}$.

Sketch of the coloring

Theorem (Behrend)

One can color the set $[n]$ with $2^{O(\sqrt{\log n})}$ colors with no monochromatic three-term arithmetic progression.

- We can overestimate the complexity from the number of the possible 3-AP-free colorings
- Two parameters d, r and writing each number in base $(2 d+1)$
- For every $x \in[n]$

$$
x=x_{0}+x_{1}(2 d+1)+\ldots x_{j}(2 d+1)^{j}+\ldots x_{r}(2 d+1)^{r}
$$

where $x_{j} \in[d], j=1,2, \ldots r$

- For each x there is a one-to-one map to v, where $v=\left(x_{0}, x_{1}, \ldots, x_{r}\right) \in \mathbb{N}^{r}$.
- A color class corresponds to the surface of a sphere, where the norm $\|v\|$ is constant:

$$
\|v\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Sketch of the coloring

- Given two points on the sphere, they can form an arithmetic series only with the third point in their bisector \rightarrow 3-AP-free condition fulfills

Sketch of the coloring

- Given two points on the sphere, they can form an arithmetic series only with the third point in their bisector \rightarrow 3-AP-free condition fulfills

- Optimizing the parameters as $r=\sqrt{\log n}$ and $d=2^{O(\sqrt{\log n})}$ we can obtain that the total number of the colorings equals to $2^{O(\sqrt{\log n})}$

Complexity of the problem

- Two of the participants (A and B) send their colors for the third party and C will send back the number 1 , if the equation fulfills, and a number 0 otherwise
\Rightarrow the complexity of this protocol is $2 \log _{2} k+2$

Complexity of the problem

- Two of the participants (A and B) send their colors for the third party and C will send back the number 1 , if the equation fulfills, and a number 0 otherwise
\Rightarrow the complexity of this protocol is $2 \log _{2} k+2$
- Based on the adaptation to the sphere, the total number of the colorings is $2^{0(\sqrt{\log n)}}$

Complexity of the problem

- Two of the participants (A and B) send their colors for the third party and C will send back the number 1 , if the equation fulfills, and a number 0 otherwise
\Rightarrow the complexity of this protocol is $2 \log _{2} k+2$
- Based on the adaptation to the sphere, the total number of the colorings is $2^{0(\sqrt{\log n})}$
- From estimating k with the formula we can get the complexity of the problem:

Theorem
$S(F)=O(\sqrt{\log n})$.

- This estimation is the best known.

