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Stability and bifurcations in reaction-diffusion equations modeling the spread of infectious diseases

1 Biological feasibility

In [8] the authors studied the following ODE system, which models the spread of an infection disease in a human
population:

(Ṡ, Ė, İ) = f(S, E, I) (1)

where
f1(S, E, I) := λ−

aSI

S+ I
+ βI−ψS− δSS,

f2(S, E, I) := ψS+ κI− δEE,

f3(S, E, I) :=
aSI

S+ I
− κI− βI− δII.

 (2)

Suppose that for the modeling of the spread of the disease we also need to consider the spatial spread of the
population: members of the population can move inside the domain Ω with (piecewise) smooth boundary, and
there is no migration through the boundary of the domain. The system can be described by the reaction-diffusion
differential equation

∂tu = D∆ru + f(u) (3)

with homogeneous Neumann-boundary conditions

(n · ∇r)u(r, t) = 0 ((r, t) ∈ ∂Ω× R+
0 ), (4)

and with (non identical vanishing) non-negative initial condition

u(·, t) = u0(·) ((r, t) ∈ Ω× {0}), (5)

where

D :=

 dS 0 0

0 dE 0

0 0 dI


is the positive definite diffusion matrix, furthermore

u := (S, E, I) and f := (f1, f2, f3).

Last semester, we showed that the model is biologically feasible in the sense that the positive quadrant is an invariant
region, that is solutions with positive initial values stay positive. Now we aim to prove the boundedness of solutions
under some conditions.

1



Theorem. Suppose that D is a scalar matrix, i.e. dS = dE = dI holds. Then model (3) defined on Ω × R+
0

has bounded solution for any initial conditions satisfying (5).

Proof. Let us define
σ(r, t) :≡ σ(S, E, I) = S(r, t) + E(r, t) + I(r, t),

then from dS = dE = dI = d, and summing the equations, we get for the time derivative of σ the inequality

σ̇(r, t) − d∆σ(r, t) ≡ λ− δSS− δEE− δII ≤ λ− ξσ(r, t), (6)

where ξ = min{dS, dE, dI}. Thus σ(r, t) satisfies

σ̇(r, t) − d∆σ(r, t) ≤ λ− ξσ(r, t), σ(r, 0) ≥ 0. (7)

Let ϕ be the solution of the initial value problem

ẏ(t) ≡ λ− ξy(t) (t ∈ [0,+∞)), y(0) = max
r∈Ω

σ(r, 0). (8)

Thus, ϕ is bounded:

ϕ(t) ≤ max
{
λ/ξ,max

r∈Ω
σ(r, 0)

}
and by the Comparison theorem (cf. [1]), σ(r, t) ≤ ϕ(t) for every t ≥ 0, and hence

Ω× R+
0 ∋ (r, t) 7→ S(r, t), E(r, t), I(r, t)

are bounded, too. We remark only that (8) implies that lim
t→+∞ϕ(t) = λ/ξ, thus σ(r, ·) (r ∈ Ω) is defined on the

whole positive half line and
lim sup
t→+∞ max

r∈Ω
σ(r, t) ≤ λ/ξ. ■

Let us consider the case when D is not a scalar matrix, i.e. the diffusion coefficient are unequal and

ψ+ δS = κ+ δI =: µ (9)

holds.

Theorem. Assumption (9) implies that system (3) is bounded.

Proof.

Step 1. Let us define the total populations size at time t by

N(t) :=
1

|Ω|

∫
Ω

(S(r, t) + I(r, t)) dr (t ∈ [0,+∞))

where |Ω| denotes the Lebesgue measure ofΩ. Thus,

N0 := N(0) =
1

|Ω|

∫
Ω

(S(r, 0) + I(r, 0)) dr.
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Adding the first and the third equation in (3) and integrating overΩ, we have
d
dt

∫
Ω

(S(r, t) + I(r, t)) dr = λ|Ω|− µ

∫
Ω

(S+ I) + dSS

∫
Ω

∆S+ dII

∫
Ω

∆I.

Using the divergence theorem we get for ϕ ∈ {S, I}∫
Ω

∆ϕ =

∫
Ω

∇(∇ϕ) =
∫
∂Ω

∇ϕ · n dΣ = 0,

because homogeneous Neumann boundary conditions means in (4) that

∇rS = 0, ∇rE = 0, ∇rI = 0 on ∂Ω× R+
0 .

Hence we have
d
dt
N(t) + µN(t) = λ (t ∈ [0,+∞)).

Integrating this equality we have

N(t) =

(
N0 −

λ

µ

)
e−µt +

λ

µ
(t ∈ [0,+∞)).

This means that for ϕ ∈ {S, I} we have ∫
Ω

ϕ ≤ λ

µ
.

Hence ϕ is bounded by
λ

µ
a.e. inΩ, i.e.

∥ϕ∥∞ ≤ λ

µ
(ϕ ∈ {S, I}).

Step 2. Using the method presented in [4] we can see that (9) implies that the second variable in (3), resp. in (2) is
also bounded:

E ≤ max
{
µN0
δE

, max
r∈Ω

E(r, 0),
aκλ+ λ(β+ δI + κ)(ψ− κ)

δE {a(δI + κ) + (β+ δI + κ)(δS − δI − κ+ψ)}

}
. ■

In [8] the authors showed, that system (2) has two equilibria, where if the reproduction ratio is denoted by

R0 :=
a

κ+ β+ δI
,

then

• in case R0 < 1 system (2) has one equilibrium:

Eb :=

(
λ

δS +ψ
,

λψ

δE(δS +ψ)
, 0

)
,

• in case R0 > 1 system (2) has two equilibira, Eb and Ee := (Se, Ee, Ie), where

Se :=
λ(β+ δI + κ)

a(δI + κ) + (β+ δI + κ)(ψ+ δS − δI − κ)
,

Ee :=
aκλ+ λ(β+ δI + κ)(ψ− κ)

δE {a(δI + κ) + (β+ δI + κ)(δS − δI − κ+ψ)}
,

Ie :=
λ(a− β− δI − κ)

a(δI + κ) + (β+ δI + κ)(δS − δI − κ+ψ)
.

These equilibria – as constant solutions – are solutions of system (3), too. The stability of these solutions can be
determined by the method of linearization.
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2 Linear stability

A spatially constant solution Φ(·) = (Φ1(·), Φ2(·)) of system (3) satisfies obvious boundary conditions (4) and
system (2). The equilibria Eb and Ee of system (2) are constant solutions of (3), (4) at the same time. In order to
investigate the local stability of these constant solutions of (3) we linearize (3) at Eb and Ee. The linearized system
with the same initial and boundary conditions has the form

∂tv = D · ∆rv + Av inΩ× R+
0 ,

(n · ∇r) v(r, t) = 0 (r, t) ∈ ∂Ω× R+
0 ,

v(r, 0) = v0(r) (r, t) ∈ Ω× {0}


(10)

where

A := J(f1,f2,f3)(u) =:

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 /
u ∈ {Eb, Ee}

/
.

Using Fourier method we suppose that system (10) has solutions of the form

Λ(r, t) = ψ(r) ·φ(t) (r, t) ∈ Ω× R+
0 )

where
ψ(r) : Ω→ R, resp. φ : R+

0 → R3

satisfy
φ̇ = (A − λD)φ (11)

and
∆ψ = −λψ,

∂ψ

∂n

∣∣∣∣
∂Ω

= 0. (12)

Thus, for the spatial domainΩ the solutions of problem (10) have the form

Λ(r, t) =
∞∑
n=0

ψn(r) exp (Ant)Ψ0n ((r, t) ∈ Ω× R+
0 )

(cf. [7]), where for n ∈ N0
An := A − λnD, Λ0n :=

∫
Ω

v0 (r)ψn(r) dr

and λn is the n-th eigenvalue of the minus Laplacian on Ω subject to homogeneous Neumann boundary conditions
i.e. the solution of (12), resp. ψn is the corresponding normalized eigenfunction, i.e. ψn solves (12). It is well
known (cf. [6]) that

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn −→ +∞ (n→ ∞)

and the eigenfunctions to different eigenvalues are orthogonal to each other.

According to [1], [2] the equilibrium u of (3) is asymptotically stable if for all n ∈ N0 the matrix An is Hurwitz
stable, i.e. all eigenvalues of An have negative real part; furthermore u is unstable if for some index n ∈ N0 there
exists an eigenvalue of An with positive real part. The characteristic polynomial of the matrix An has the form

∆An(z) := z
3 − Tnz

2 + Ãnz−Dn (z ∈ C) (13)
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where

Dn := det(An) = det

 a11 − dSS a12 a13

a21 a22 − dEE a23

a31 a32 a33 − dII


and

Tn := Tr(An) = Tr(A) − λn Tr(D) = a11 + a22 + a33 − λn (dSS + dEE + dII) ,

resp. Ãn is the sum of 2-by-2 determinants obtained from the matrix An after omitting the rows and columns with
the same index:

Ãn := det

[
a11 − dSS a12

a21 a22 − dEE

]
+ det

[
a11 − dSS a13

a31 aII − dII

]
+ det

[
a22 − dEE a23

a32 a33 − dII

]
,

i.e. Ãn is the sum of all 2× 2 principal minors of An. The Routh-Hurwitz condition states that An is Hurwitz stable
if and only if for all n ∈ N0

Tn < 0, Dn < 0, resp. Tn · Ãn < Dn (14)

hold. In order to show diffusion driven or Turing instability one need to check that the given equilibrium is (locally)
asymptotically stable steady state of the kinetic system (2) and it is unstable with respect to (3), i.e. one of the
conditions in (14) is violated. The stability with respect to the kinetic system (2) ensures that Tr(A) < 0 holds, which
has the consequence that Tn < 0, i.e. (14) reduces to

Tn · Ãn < Dn < 0. (15)

This means that we have diffusion driven instability if for some n ∈ N

Dn > 0 or Tn · Ãn > Dn

holds. In case of

• u = Eb the characteristic polynomial (13) has the form

∆Eb

An
(z) := z3 +AEbz2 + BEbz+ CEb (z ∈ C) (16)

where
AEb := −a+ β+ δE + δI + δS + κ+ (dSS + dEE + dII) · λn +ψ,

BEb := − (−dSSλn − δS −ψ) · (−a+ β+ dEEλn + dIIλn + δE + δI + κ)

+ (−dEEλn − δE) · (a− β− dIIλn − δI − κ) ,

CEb := (dEEλn + δE) · (dSSλn + δS +ψ) · (−a+ β+ dIIλn + δI + κ) .

• u = Ee the characteristic polynomial (13) has the form

∆Ee

An
(z) := z3 +AEez2 + BEez+ CEe (z ∈ C) (17)
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where
AEe := a− β− δI + δS − κ+ (dSS + dEE + dII)λn +ψ,

BEe := −
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)

a2

−(−δE − dEEλn)(a− β− δI + δS − κ+ dSSλn + dIIλn +ψ)

−

(
dSSλn +

a2 + a(−2(β+ δI + κ) + δS +ψ) + (β+ δI + κ)
2

a

)

·
(
(β+ δI + κ)(−a+ β+ δI + κ)

a
− dIIλn

)
,

CEe := (dEEλn + δE) ·
{(
dIIλn −

(β+ δI + κ)(−a+ β+ δI + κ)

a

)

·
(
dSSλn +

a2 + a(−2(β+ δI + κ) + δS +ψ) + (β+ δI + κ)
2

a

)

−
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)

a2

}
.

In order to examine the real part of the zeros of the characteristic polynomial (13) we are going to use the well-known
Cardano formula on the cubic polynomial

p(z) := z3 + a2z
2 + a1z+ a0 (z ∈ C). (18)

Lemma (Cardano). The zeros of be calculated as follows:

ξ1 := −
a2
3

+ u+ v, ξ2 := −
a2
3

−
u+ v

2
+
ı
√
3

2
(u− v), ξ3 := −

a2
3

−
u+ v

2
−
ı
√
3

2
(u− v),

where

u :=
3

√
β+

√
α3 + β2, v :=

3

√
β−

√
α3 + β2 with α :=

3a1 − a
2
2

9
, β :=

9a1a2 − 2a
3
2 − 27a0

54
.

Furthermore, calculating the discriminant
△ := α3 + β2

one concludes by means of the sign of △ that

• if △ > 0 then p has one real root: ξ1 and two complex conjugate roots: ξ1, ξ2 = ξ1;

• if △ = 0 then p has only real roots and ξ2 = ξ3;

• if △ < 0 then p has three unequal real roots: ξ1, ξ2, ξ3.

Thus, in case of
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• u = Eb direct calculation shows that

△ = α3 + β2 =

(
3a1 − a

2
2

9

)3
+

(
9a1a2 − 2a

3
2 − 27a0

54

)2

= −
1

108
(−a+ β− dEEλn + dIIλn − δE + δI + κ)

2 · (dSSλn − dIIλn − δE + δS +ψ)2

·(a− β+ dSSλn − d3λn − δI + δS − κ+ψ)2 < 0.

Hence the roots of (13) are

ξ1 := −dEEλn − δE < 0,

ξ2 := −dSSλn − δS −ψ < 0,

ξ3 := a− β− dIIλn − δI − κ = (a− β− δI − κ) − dIIλn.

Thus, in case of

1. R0 < 1, i.e. when
a− β− δI − κ < 0

holds, then the polynomial in (13) is stable, which means that the boundary equilibrium of the kinetic
system (2) remains stable with respect to (3), i.e. no diffusion driven instability occurs.

2. R0 > 1, i.e. when
a− β− δI − κ > 0 (19)

holds, then the polynomial in (13) is unstable, which means the originally unstable boundary equilibrium
of the kinetic system may or may not be stable, it is stable if and only if

dII >
a− (β+ δI + κ)

λ1
>
a− (β+ δI + κ)

λn
(n ∈ N) (20)

holds, i.e. the diffusion coefficient of the infecteds crosses a critical value. This is the case of the well
known phenomenon when diffusion causes stability. This reflects the fact that if the individuals in the
infected compartment are moving toward each other then the uninfected equilibrium stabilizes.

• u = Ee direct calculation shows that

∆Ee

An
(z) = (z+ dEEλn + δE) ·

{(
z+ dIIλn −

(β+ δI + κ)(−a+ β+ δI + κ)

a

)

·
(
z+ dSSλn +

a2 + a(−2(β+ δI + κ) + δS +ψ) + (β+ δI + κ)
2

a

)

−
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)

a2

}
=: (z+ dEEλn + δE) · P(z)

and the stability of (13) depends only on the stability of the quadratic polynomial P for which

∆An(z) ≡ (z+ dEEλn + δE) · P(z),
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resp.

P(z) =

(
z+ dIIλn −

(β+ δI + κ)(−a+ β+ δI + κ)

a

)
·
(
z+ dSSλn +

a2 + a(−2(β+ δI + κ) + δS +ψ) + (β+ δI + κ)
2

a

)
−
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)

a2

= z2 + z(a− β− δI − κ+ δS + dIIλn + dSSλn +ψ)

+
1

a2

((
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)

+
(
−(β+ δI + κ)

2 + a(β+ δI + κ+ dIIλn)
)

·
(
a2 + a(−2(β+ δI + κ) + δS +ψ+ dSSλn) + (β+ δI + κ)

2
))

hold. Due to the condition (19) the coefficient of the linear term is clearly positive:

a− β− δI − κ+ δS + dIIλn +ψ > 0,

therefore we have only to show that the constant term

C :=
1

a2

((
(−a+ β+ δI + κ)

2
(
aβ− (β+ δI + κ)

2
)
+
(
−(β+ δI + κ)

2 + a(β+ δI + κ+ dIIλn)
)

·
(
a2 + a(−2(β+ δI + κ) + δS +ψ+ dSSλn) + (β+ δI + κ)

2
))
.

is also positive. Using the notations

A := −a+ β+ δI + κ < 0 and B := β+ δI + κ > 0

we get

C =
1

a2

(
−A2(aβ− B2) +

(
−B2 + a(dIIλn + B)

)
·
(
A2 + aδS + adIIλn + aψ

))
=

1

a2

(
−A2(aβ− B2) +A2

(
a(dIIλn + B) − B

2
)

+
(
−B2 + a(dIIλn + B)

)
· (aδS + adIIλn + aψ)

)
≥ 0

Because

aδS+adIIλn+aψ ≥ 0 and −B2+a(dIIλn+B) ≥ 0 and aβ−B2 ≤ a(dIIλn+B)−B2,

we have proven the following

Theorem. If the endemic equilibrium Ee exists, i.e. condition (19) holds then the Ee as equilibrium of
system (3) remains stable.

This means that diffusion can’t cause in this case instability.

In order to have diffusion driven instability we assume that cross-diffusion is present, as well, i.e. the matrixD in (3)
has the form

D :=

 dSS dSE 0

dES dEE 0

dIS dIE dII

 . (21)
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In order to have Hopf bifurcation one has to show that a pair of complex conjugate roots of the corresponding
characteristic polnomial

µ(h)± ıν(h)

crosses the imaginary axis with non-zero velocity, that is for a h∗ > 0

µ(h∗) = 0, ν(h∗) ̸= 0 and µ ′(h∗) ̸= 0

hold. This is fulfilled (cf. [8]) if exists n ∈ N0 and h∗ > 0 such that

Tn(h
∗) ̸= 0, Ãn(h

∗) < 0, Dn(h
∗) = Tn(h

∗) · Ãn(h∗) (22)

and
d

dh

{
Tn(h) · Ãn(h) − Dn(h)

}∣∣∣
h=h∗

̸= 0. (23)

For the bifurcation parameter we choose h := dSE. Using the notations

A := −a+β+δI+κ < 0, B := β+δI+κ > 0, K := (a−β+δE−δI+δS−κ+(dSS+dEE+dII)λ+ψ) > 0

and by solving the third equation in (22) for dSE, we get d∗SE = Z/W where

Z := (aβ− B2)(δE + dEEλn)(−A
2 − adISλn) + a

2dIEκλn · K− (aβ− B2)(−A2 − adISλn) · K
−(δE + dEEλn)(−B

2 + a(B+ dIIλn)(A
2 + a(dSSλn + δS +ψ))

+a(δE + dEEλn) · K(A2 + a(dSSλn + δS +ψ)) + (−B2 + a(B+ dIIλn))

·K · (A2 + a(dSSλn + δS +ψ)) + adIEλn
(
(aβ− B2)(dESλn −ψ) − κ(A

2 + a(dSSλn + δS +ψ))
)
,

W := a2λn

(
κ

(
(−a+ β+ δI + κ)

2

a
− dISλn

)
+(ψ− dESλn)

(
(β+ δI + κ)(−a+ β+ δI + κ)

a
− dIIλn

)
+(−ψ+ dESλn) · K) .

Clearly Tn(d
∗
SE) ̸= 0. By examining W,Z, we can see that for d∗SE to be positive, the following conditions are

sufficient:
W ≥ 0, aβ− B2, adIEλnκ < a(δE + dEEλn) · K, dESλn −ψ < 0. (24)

If d∗SE is positive, then the positivity of BEe is guaranteed if additionally

BA

a
− dIIλn < 0 and

A2

a
− dISλn > 0 (25)

are fulfilled. Lastly, we need the derivative to not disappear:

A2

a
− dISλn ̸=

(
BA

a
− dII

)
(−dESλn +ψ) + (dESλn −ψ) · K. (26)

If conditions (24) - (26) hold, then the transversality conditions are fulfilled, therefore Turing-Hopf bifurcation
takes place when the parameter dSE crosses the critical value d∗SE. An example of parameters that fulfil conditions
(24)–(26):

a := 3, β := 1, δI :=
1

2
, δE :=

1

4
, δS :=

1

64
, κ := 1, ψ :=

1

8
,

dSS :=
1

64
, dEE :=

1

32
, dII := 1, dES :=

1

64
, dIE :=

1

4
, dIS :=

1

8192
.
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Figure 1: The first component of the solution of system (3) when (24) - (26) hold.
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