Introduction

Biological feasibility

Linear stability

No cross diffusion

Cross diffusion

Stability and bifurcations in a reaction-diffusion system modelling disease propagation

Veronika Gálffy

Supervisors: Dr. Sándor Kovács Szilvia György

Eötvös Loránd University Department of Numerical Analysis

Tuesday 9th January, 2024

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 1/16

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction 000	Biological feasibility 00	Linear stability 00	No cross diffusion O	Cross diffusion
Summary				

Introduction

2 Biological feasibilty

3 Linear stability

4 The system with self- and without cross-diffusion

5 The system with self- and cross-diffusion

Introduction	Biological feasibility	Linear stability	No cross diffusion	Cross diffusion
●00	00	00	O	

The kinetic system

SIS-modell

In [10] the following SIS epidemic model was proposed:

$$\begin{split} \dot{S} &:= \lambda - \frac{aSI}{S+I} + \beta I - \psi S - \delta_S S, \\ \dot{E} &:= \psi S + \kappa I - \delta_E E, \\ \dot{I} &:= \frac{aSI}{S+I} - \kappa I - \beta I - \delta_I I. \end{split}$$
 (1)

- $\delta_k > 0$: death rates,
- λ > 0: birth rate,
- *a* > 0: transmission coefficient,

V

- $\beta > 0$: recovery rate,
- $\kappa > 0$ and $\psi > 0$: educational rate of the infecteds and susceptibles.

eronika Gálffy	Stability and bifurcations in a reaction-diffusion	system
	modelling disease propagation	3/16

Steady states of the kinetic system

In [10] the authors

1 calculated the basic reproduction ratio

$$\mathcal{R}_0 := rac{\mathsf{a}}{\kappa + eta + \delta_I}$$

- In case of $\mathcal{R}_0 < 1$ the system has one asymptotically stable disease free steady state;
- In case of $\mathcal{R}_0>1$, there are two strady states \mathfrak{E}_b and \mathfrak{E}_e
- 2 proved that in case of $\mathcal{R}_0 = 1$ the steady state \mathfrak{E}_b loses its stability through a transcritical bifurcation, exchanging stability with the new equilibrium \mathfrak{E}_e .

< ロ > < 同 > < 三 > < 三 > <

Linear stability

No cross diffusion

Cross diffusion

Adding diffusion to the system

The reaction-diffusion system

$$\begin{array}{ll} \partial_t u = D \cdot \Delta_r u + f(u) & \text{ in } \Omega \times \mathbb{R}_0^+, \\ (n \cdot \nabla_r) u(r, t) = 0 & ((r, t) \in \partial \Omega \times \mathbb{R}_0^+), \\ u(r, 0) = u_0(r) & ((r, t) \in \overline{\Omega} \times \{0\}) \end{array} \right\}$$
(2)

where

$$D := \left[\begin{array}{ccc} d_{SS} & d_{SE} & 0 \\ d_{ES} & d_{EE} & 0 \\ d_{IS} & d_{IE} & d_{II} \end{array} \right].$$

- \mathfrak{E}_b and \mathfrak{E}_e are steady states of system (2), too.
- In [10] the authors showed, that the positive octant of the phaseplane is an invariant set for (1)

Introduction	Biological feasibility	Linear stability	No cross diffusion	Cross diffusion
000	●0	00	O	

Positivity with self-diffusion

lf

$$\boldsymbol{\Phi} = (\Phi_1, \Phi_2, \Phi_3): \overline{\Omega} \times \mathbb{R}^+_0 \to \mathbb{R}^3$$

is a solution of (2), then

- using a theorem from [5] and
- observing that $\Phi_3\equiv 0$ is a solution of the third equation in (2) we get:

Theorem

If D is a positive diagonal matrix then all solutions $\Phi = (\Phi_1, \Phi_2, \Phi_3) \in \overline{\Omega} \times \mathbb{R}^+_0 \to \mathbb{R}^3 \text{ of } (2) \text{ with positive initial}$ values $\Phi_1(0) > 0$, $\Phi_2(0) > 0$, $\Phi_3(0) > 0$ remain positive for all $t \ge 0$ in their domain of existence.

Introduction 000	Biological feasibility ⊙●	Linear stability 00	No cross diffusion O	Cross diffusion
Dissipativ	vity			

Theorem

If D is a positive scalar matrix then system (2) is dissipative.

Theorem

If D is a positive diagonal matrix then condition

Veronika Gálffy

$$\psi + \delta_{S} = \kappa + \delta_{I} =: \mu \tag{3}$$

implies that system (2) is dissipative.

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 7/16

< ロ > < 同 > < 三 > < 三 > <

Introduction 000	Biological feasibility 00	Linear stability ●○	No cross diffusion O	Cross diffusion
Lineariza	ation 1			

Let $\mathfrak{E}^* \in {\mathfrak{E}_b, \mathfrak{E}_e}$, then the linarization of system (2) at \mathfrak{E}^* has the form:

$$\left. \begin{array}{l} \partial_{t} \mathsf{v} = D \cdot \Delta_{\mathsf{r}} \mathsf{v} + \mathfrak{A} \mathsf{v} & \text{ in } \Omega \times \mathbb{R}_{0}^{+}, \\ (\mathsf{n} \cdot \nabla_{\mathsf{r}}) \, \mathsf{v}(\mathsf{r}, t) = 0 & ((\mathsf{r}, t) \in \partial\Omega \times \mathbb{R}_{0}^{+}), \\ \mathsf{v}(\mathsf{r}, 0) = \mathsf{v}_{0}(\mathsf{r}) & ((\mathsf{r}, t) \in \overline{\Omega} \times \{0\}) \end{array} \right\}$$
(4)

where

$$\mathfrak{A} := \mathsf{f}'(\mathfrak{E}^*).$$

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 8/16

Introduction	Biological feasibility	Linear stability	No cross diffusion	Cross diffusion
000	00	⊙●	O	

Linearization 2.

Solving system (4) using Fourier-method (c.f. [11]):

$$\mathsf{v}(\mathsf{r},t) = \sum_{
u=0}^{\infty} \psi_{
u}(\mathsf{r}) \exp\left(\mathfrak{A}_{
u}t\right) \mathbf{\Lambda}_{
u},$$

where for any $\nu \in \mathbb{N}_0$:

$$\mathfrak{A}_{
u}:=\mathsf{f}'(\mathfrak{E}^*)-\lambda_{
u}D,\qquad \mathbf{\Lambda}_{
u}:=\int_{\Omega}\mathsf{v}_{\mathsf{0}}(\mathsf{r})\psi_{
u}(\mathsf{r})\,\mathrm{d}\mathsf{r},$$

resp. λ_{ν} and ψ_{ν} are eigenvalues and eigenfunctions of $-\Delta_{\rm r}$ with HNBC:

$$\Delta_{\mathsf{r}}\psi_
u = -\lambda_
u\psi_
u, \qquad \partial_{\mathsf{n}}\psi_
u|_{\partial\Omega} = 0.$$

It can be proven that

$$0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_\nu \longrightarrow +\infty \qquad (n \to \infty).$$

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 9/16

Diffusional instability - only self-diffusion

Examining the characteristic polynomial of \mathfrak{A}_{ν} we get

Theorem

- In case $\mathcal{R}_0 < 1$, the steady state \mathfrak{E}_b cannot lose its stability.
- In case $\mathcal{R}_0 > 1$, diffusion stabilizes \mathfrak{E}_b , if

$$d_{II} > \frac{a - (\beta + \delta_I + \kappa)}{\lambda_1} \tag{5}$$

holds.

Theorem

If the steady state \mathfrak{E}_e exists, then it remains asymptotically stable for all diagonal matrices D.

Veronika Gálffy mode

・ロト・ロット・モト・モーン そうの Stability and bifurcations in a reaction-diffusion system modelling disease propagation 10/16

Diffusional instability of \mathfrak{E}_b - with cross-diffusion 1.

Examining the cahracterictic polynomial in this case too, we get

< ロ > < 同 > < 三 > < 三 > <

Diffusional instability of \mathfrak{E}_b - with cross-diffusion 2.

Let introduce

$$w := d_{ES}d_{SE} - d_{EE}d_{SS},$$

$$q := d_{ES}\psi - d_{EE}\delta_S - d_{EE}\psi - \delta_E d_{SS},$$

$$z := -\delta_E\delta_S - \delta_E\psi.$$

Theorem

In case $\mathcal{R}_0 > 1$, if

$$d_{II} > rac{a-(eta+\delta_I+\kappa)}{\lambda_1}, \ w < 0 \qquad ext{and} \qquad q^2-4wz < 0$$

hold, then diffusion stabilizes the steady state \mathfrak{E}_b .

Stability and bifurcations in a reaction-diffusion system

э

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 12/16

(a)

Diffusional instability of \mathfrak{E}_e - with cross-diffusion 1.

The characteristic polynomial \mathfrak{A}_{ν} :

$$\Delta_{\mathfrak{A}_{
u}}(z):=z^3-\mathfrak{T}_{
u}z^2+\widetilde{\mathfrak{A}}_{
u}z-\mathfrak{D}_{
u}\qquad(z\in\mathbb{C})$$

In order to have Hopf bifurcation one has to show that a pair of complex conjugate roots

$$\mu(h) \pm \imath \nu(h)$$

crosses the imaginary axis with non-zero velocity.

Diffusional instability of \mathfrak{E}_e - with cross-diffusion 2.

This is fulfilled if for a $h_*>0$ there exists $u\in\mathbb{N}_0$ such that

$$\mathfrak{T}_{
u}(h^*)
eq 0, \qquad \widetilde{\mathfrak{A}}_{
u}(h^*) < 0, \qquad \mathfrak{D}_{
u}(h^*) = \mathfrak{T}_{
u}(h^*) \cdot \widetilde{\mathfrak{A}}_{
u}(h^*)$$
 (6)

and

$$\frac{\mathrm{d}}{\mathrm{d}h}\left\{\mathfrak{T}_{\nu}(h)\cdot\widetilde{\mathfrak{A}}_{\nu}(h)-\mathfrak{D}_{\nu}(h)\right\}\Big|_{h=h^{*}}\neq0.$$
(7)

We chose d_{SE} as bifurcation parameter and

- showed the existence of Turing-Hopf bifurcation under some conditions regarding the system parameters,
- gave an example of parameters and made a simulation with MATHEMATICA ${}^{I\!R}.$

< ロ > < 同 > < 三 > < 三 > <

Introduction	Biological feasibility	Linear stability	No cross diffusion	Cross diffusion
000	00	00	O	0000●0

ふちゃくゆ かんかく かくゆ くちゃ

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 15/16

Biological feasibility

Linear stability

No cross diffusion

Cross diffusion

Thank you for your attention!

Veronika Gálffy

Stability and bifurcations in a reaction-diffusion system modelling disease propagation 16/16

3

- Britton, Nicholas F.: Reaction-diffusion equations and their applications to biology., Elsevier Academic Press Inc, USA United States, 1986.
- Capone, F.: On the dynamics of predator-prey models with the Beddington-De Angelis functional response, under Robin boundary conditions, Ricerche di Matematica 57 (2008), 137–157.
- Casten, R. G.; Holland, C. J.: Stabilitity properties of solutions to systems of reaction-diffusion equations, SIAM J. Appl. Math. 33 (1977), 353–364.
- Casten, R. G.; Holland, C. J.: Stability results for reaction diffusion equations with Neumann boundary conditions, J. Differential Equations 27 (1978), 266–273.

- Chueh, K. N.; Conley, C. C.; Smoller, J. A.: Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26(2) (1977), 373–392.
- Evans, L. C..: Partial differential equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
- Farkas, M.: *Dynamical models in biology*, TAcademic Press, Inc. San Diego, CA, 2001.
- Kovács, S.: *Turing bifurcation in a system with cross diffusion*, Nonlinear Anal. **59**(4) (2004), 567–581.
- Kovács, S.; György, Sz.; Gyúró, N.: Oscillatory Behavior of a Delayed Ratio-Dependent Predator-Prey System with Michaelis-Menten Functional Response. Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems,

Introduction	Biological feasibility	Linear stability	No cross diffusion	Cross diffusion
000	00	00	O	00000●

and Cells' Selected Works from the 20th BIOMAT Consortium Lectures. Rio de Janeiro. Brazil. 2020 17-31.

- Kovács, S.; György, Sz.; Gyúró, N.: Dynamics of an SIS epidemic model with no vertical transmission. Trends in biomathematics: modeling epidemiological, neuronal, and social dynamics, Springer, Cham, 2023, 1-15.
- Farkas, M.: Dynamical models in biology, Academic Press, Inc., San Diego, CA, 2001.

イロト 不得下 イヨト イヨト 二日