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The kinetic system

SIS-modell

In [10] the following SIS epidemic model was proposed:

Ṡ := λ− aSI

S + I
+ βI − ψS − δSS ,

Ė := ψS + κI − δEE ,

İ :=
aSI

S + I
− κI − βI − δI I .

 (1)

• δk > 0: death rates,

• λ > 0: birth rate,

• a > 0: transmission coe�cient,

• β > 0: recovery rate,

• κ > 0 and ψ > 0: educational rate of the infecteds and
susceptibles.
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Steady states of the kinetic system

In [10] the authors

1 calculated the basic reproduction ratio

R0 :=
a

κ+ β + δI
.

• In case of R0 < 1 the system has one asymptotically stable

disease free steady state;

• In case of R0 > 1, there are two strady states Eb and Ee

2 proved that in case of R0 = 1 the steady state Eb loses its
stability through a transcritical bifurcation, exchanging
stability with the new equlibrium Ee .
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Adding di�usion to the system

The reaction-di�usion system

∂tu = D ·∆ru+ f(u) in Ω× R+
0 ,

(n · ∇r) u(r, t) = 0 ((r, t) ∈ ∂Ω× R+
0 ),

u(r, 0) = u0(r) ((r, t) ∈ Ω× {0})

 (2)

where

D :=

 dSS dSE 0
dES dEE 0
dIS dIE dII

 .
• Eb and Ee are steady states of system (2), too.
• In [10] the authors showed, that the positive octant of the
phaseplane is an invariant set for (1)
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Positivity with self-di�usion

If
Φ = (Φ1,Φ2,Φ3) : Ω× R+

0 → R3

is a solution of (2), then

• using a theorem from [5] and

• observing that Φ3 ≡ 0 is a solution of the third equation in (2)
we get:

Theorem

If D is a positive diagonal matrix then all solutions
Φ = (Φ1,Φ2,Φ3) ∈ Ω× R+

0 → R3 of (2) with positive initial
values Φ1(0) > 0, Φ2(0) > 0, Φ3(0) > 0 remain positive for all
t ≥ 0 in their domain of existence.
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Dissipativity

Theorem

If D is a positive scalar matrix then system (2) is dissipative.

Theorem

If D is a positive diagonal matrix then condition

ψ + δS = κ+ δI =: µ (3)

implies that system (2) is dissipative.
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Linearization 1.

Let E∗ ∈ {Eb,Ee}, then the linarization of system (2) at E∗ has
the form:

∂tv = D ·∆rv + Av in Ω× R+
0 ,

(n · ∇r) v(r, t) = 0 ((r, t) ∈ ∂Ω× R+
0 ),

v(r, 0) = v0(r) ((r, t) ∈ Ω× {0})

 (4)

where
A := f ′(E∗).
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Linearization 2.

Solving system (4) using Fourier-method (c.f. [11]):

v(r, t) =
∞∑
ν=0

ψν(r) exp (Aνt)Λν ,

where for any ν ∈ N0:

Aν := f ′(E∗)− λνD, Λν :=

∫
Ω
v0(r)ψν(r) dr,

resp. λν and ψν are eigenvalues and eigenfunctions of −∆r with
HNBC:

∆rψν = −λνψν , ∂nψν |∂Ω = 0.

It can be proven that

0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λν −→ +∞ (n → ∞).
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Di�usional instability - only self-di�usion

Examining the characteristic polynomial of Aν we get

Theorem

• In case R0 < 1, the steady state Eb cannot lose its stability.

• In case R0 > 1, di�usion stabilizes Eb, if

dII >
a− (β + δI + κ)

λ1
(5)

holds.

Theorem

If the steady state Ee exists, then it remains asymptotically stable
for all diagonal matrices D.
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Di�usional instability of Eb - with cross-di�usion 1.

Examining the cahracterictic polynomial in this case too, we get

Theorem

In case R0 < 1, if
dESdSE > dEEdSS

holds, then the steady state Eb loses its stability.
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Di�usional instability of Eb - with cross-di�usion 2.

Let introduce

w := dESdSE − dEEdSS ,

q := dESψ − dEEδS − dEEψ − δEdSS ,

z := −δEδS − δEψ.

Theorem

In case R0 > 1, if

dII >
a− (β + δI + κ)

λ1
, w < 0 and q2 − 4wz < 0

hold, then di�usion stabilizes the steady state Eb.
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Di�usional instability of Ee - with cross-di�usion 1.

The characteristic polynomial Aν :

∆Aν (z) := z3 − Tνz
2 + Ãνz −Dν (z ∈ C)

In order to have Hopf bifurcation one has to show that a pair of
complex conjugate roots

µ(h)± ıν(h)

crosses the imaginary axis with non-zero velocity.
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Di�usional instability of Ee - with cross-di�usion 2.

This is ful�lled if for a h∗ > 0 there exists ν ∈ N0 such that

Tν(h
∗) ̸= 0, Ãν(h

∗) < 0, Dν(h
∗) = Tν(h

∗) · Ãν(h
∗) (6)

and
d

dh

{
Tν(h) · Ãν(h)−Dν(h)

}∣∣∣
h=h∗

̸= 0. (7)

We chose dSE as bifurcation parameter and

• showed the existence of Turing-Hopf bifurcation under some
conditions regarding the system parameters,

• gave an example of parameters and made a simulation with
MATHEMATICA®.
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Thank you for your attention!
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