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The kinetic system

SIS-modell

In [10] the following SIS epidemic model was proposed:

. asl
= - /_ —
5. A S+ + Bl — S — §sS,
E = ¢S+ kl—6cE, (1)
. asl
I = 5+I_Hl_ﬂl_5ll'

Ok > 0: death rates,

A > 0: birth rate,

a > 0: transmission coefficient,

B > 0: recovery rate,

k > 0 and ¢ > 0: educational rate of the infecteds and
susceptibles.
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Steady states of the kinetic system

In [10] the authors

calculated the basic reproduction ratio

a

Ro = — =
O T k¥ B+

Cross diffusion
000000

e In case of Ry < 1 the system has one asymptotically stable

disease free steady state;

e In case of Rg > 1, there are two strady states €, and €&,

proved that in case of Ro = 1 the steady state €, loses its

stability through a transcritical bifurcation, exchanging

stability with the new equlibrium €&..
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Adding diffusion to the system
The reaction-diffusion system

Owu=D-Au+f(u) inQxRY,
(n-Vy)u(r,t) =0 ((r;t) € 02 x R{), (2)
u(r,0) = up(r) ((r,t) € Q2 x {0})

where
dss dsg O
D .= des deg O
ds die dy

e ¢, and €&, are steady states of system (2), too.
e In [10] the authors showed, that the positive octant of the
phaseplane is an invariant set for (1)
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Positivity with self-diffusion

If
® = (b1, Py, 03): QxR — R3

is a solution of (2), then

e using a theorem from [5] and

e observing that ®3 = 0 is a solution of the third equation in (2)
we get:

Theorem

If D is a positive diagonal matrix then all solutions

D = (D1, Py, P3) € Q x Ry — R3 of (2) with positive initial
values ®1(0) > 0, $(0) > 0, ®3(0) > 0 remain positive for all
t > 0 in their domain of existence.
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Dissipativity

If D is a positive scalar matrix then system (2) is dissipative.

Theorem

If D is a positive diagonal matrix then condition
V+0s=kK+6 = p (3)

implies that system (2) is dissipative.

Stability and bifurcations in a reaction-diffusion system

Vererila iy modelling disease propagation 7/16



Introduction Biological feasibility Linear stability No cross diffusion Cross diffusion
000 [e]e] [ o) o] 000000

Linearization 1.

Let &* € {€p, €.}, then the linarization of system (2) at €* has
the form:

Ov =D A+ 2Av ian]Rar,

(n-Vy)v(r,t)=0 ((r,t) € 02 x RY), (4)
v(r,0) = vo(r) ((r,t) € Q x {0})
where
2= f'(¢").
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Linearization 2.

Solving system ing Fourier-method (c.f.

v(r,t) = dhy(r)exp (At) Ay,
v=0

where for any v € Ng:

2, = f'(¢") -\, D, A, = / vo(r),(r) dr,
Q
resp. A\, and 1), are eigenvalues and eigenfunctions of —A, with
HNBC:
Ar¢V = _Auwm aﬂ¢V|8Q = 0.
It can be proven that

0= <M< mn<... <)\ — 4+ (n%oo)
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Diffusional instability - only self-diffusion

Examining the characteristic polynomial of [, we get

Theorem

e In case Ry < 1, the steady state &, cannot lose its stability.
e In case Rg > 1, diffusion stabilizes &, if

a—(ﬁ-l—(s/-l-/ﬁ)

d,
"> "

()

holds.

Theorem

If the steady state &, exists, then it remains asymptotically stable
for all diagonal matrices D.
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Diffusional instability of &, - with cross-diffusion 1.

Examining the cahracterictic polynomial in this case too, we get

Theorem
In case Rg < 1, if
desdse > deedss

holds, then the steady state &, loses its stability.
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Diffusional instability of &, - with cross-diffusion 2.

Let introduce

w = dgsdsg — deedss,
q = desy) — dgeds — degtp — Ogdss,
z:= —0pbs — 6.

Theorem
In case Rg > 1, if

a—(ﬁ—i—él—l—n)
A1 ’

dy > w <0 and q2—4wz<0

hold, then diffusion stabilizes the steady state &,.
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Diffusional instability of &, - with cross-diffusion 1.

The characteristic polynomial 2,:
Ny (2) =2 -, 2 +Ayz— D, (zeC)

In order to have Hopf bifurcation one has to show that a pair of
complex conjugate roots

p(h) £ w(h)

crosses the imaginary axis with non-zero velocity.
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Diffusional instability of &, - with cross-diffusion 2.

This is fulfilled if for a h, > 0 there exists v € Ny such that

T(h) #0,  A(h) <0,  D,(h) =T, (h") A, (h7) (6)

and
d

s A -2} A0 (7)

h=h*
We chose dsg as bifurcation parameter and

e showed the existence of Turing-Hopf bifurcation under some
conditions regarding the system parameters,

e gave an example of parameters and made a simulation with
MATHEMATICA®.
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