
Coupled task scheduling

Anna Markó
Supervisor: Györgyi Péter

2023. december 10.

1 Introduction

The coupled task scheduling problem refers to scheduling n jobs, each consisting of
two tasks, on a single machine. The machine can only process one task at a time.
Each job is characterized by three parameters: aj, lj, and bj, where aj represents the
processing time of the first task of the job j, bj represents the processing time of its
second task, and Lj denotes the time interval that must elapse between the processing
of the two tasks.

l1 l3

l2

a1 a2 b1 b2a3 b3a1 a2 b1 b2a3 b3

A scheduling can be represented as σ = (s1, s2, . . . , sn), where sj denotes the start-
ing time of the job j. Let Cj represent the completion time of job j. The problem is
studied based on various objective functions, with the most investigated being Cmax,
where the objective function is maxj Cj.

Throughout the semester, I focused on the objective function
∑

Cj. For a general
problem with parameters aj, lj, and bj, it is NP -hard, and currently, no approximation
algorithm is known for it. However, there are several variants that are also NP -hard,
but approximation algorithms are known for them[2]. Examples include:

3-approx 2-approx 1.5-approx
a, lj, b a, lj, b, b ≤ a 1, lj, 1
aj, L, bj aj, pj, pj pj, L, pj

pj, pj, bj pj, pj, pj

My goal was to create an IP solver for the problem with parameters aj, L, and bj,
and to use it to investigate how effective a 3-approximation algorithm is in practice.
Another objective was to search for instances of the problem in which the approxima-
tion algorithm produces particularly poor results.

1

2 IP solver

I used the Sherali and Smith model as the basis for my IP solver[1]. Two jobs can be
scheduled in six different ways relative to each other:

1.

2.

3.

4.

5.

6.

a1 a2b1 b2a1 a2b1 b2 a1a2 b1b2 a1a2 b1b2

a1 a2 b1 b2a1 a2 b1 b2 a1a2 b1b2a1a2 b1b2

a1 a2 b1b2a1 a2 b1b2 a1a2 b1 b2a1a2 b1 b2

Let’s assign variables yi,j,k to every pair (i, j) for every k, where 1 ≤ k ≤ 6. These
variables represent how the job i and job j are positioned relative to each other in a
given schedule. Let si denote the starting time of the job i. We define task-dependent
constants ri,j,k for every (i, j, k) triplet, which are intended to indicate the conditions
that must be satisfied when the relative position of jobs i and j is k. Let M be a
sufficiently large constant (an upper bound on the time difference between the starting
times of two jobs). Let ti := ai + L+ bi.

ri,j,1 = M

ri,j,2 = ai + bi − aj

ri,j,3 = ai + bi − tj

ri,j,4 = −tj

ri,j,5 = −aj

ri,j,6 = −aj

Given this information, we may formulate the problem as follows.

Minimize
n∑

i=1

si + ti

subject to sj − si ≤
6∑

k=1

ri,j,kyi,j,k 1 ≤ i ≤ n, 1 ≤ j ≤ n

6∑
k=1

yi,i,k = 0 1 ≤ i ≤ n

6∑
k=1

yi,j,k = 1 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j

yi,j,1 = yj,i,4 1 ≤ i ≤ n, 1 ≤ j ≤ n

yi,j,2 = yj,i,5 1 ≤ i ≤ n, 1 ≤ j ≤ n

yi,j,3 = yj,i,6 1 ≤ i ≤ n, 1 ≤ j ≤ n

yi,j,k ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ n

sj ∈ Z+ 1 ≤ i ≤ n

In the case of the (aj, L, bj) problem, only four out of the outlined six cases are
possible, as the third and sixth cases are not feasible. Accordingly, the integer pro-
gramming (IP) formulation simplifies. I implemented the IP in Python, initially using

2

the Python MIP package. Unfortunately, with this package, I could only solve prob-
lems with a small number of jobs. Therefore, I switched to the Gurobi optimization
solver.

3 Approximation algorithm

For the (aj, L, bj) problem, David Fisher and Péter Györgyi published a 3-approximation
algorithm in their recent work[2], and I have implemented it.

Algorithm 1:

Input : (aj, bj) j = 1 . . . n, L
Output: (sj)

n
j=1 j = 1 . . . n

1 Sort the jobs in non-decreasing order of aj + bj;
2 s1 := 0;
3 for j = 2 . . . n do
4 if aj can be scheduled immediately after aj−1 without overlapping into the

processing time of other tasks then
5 Schedule it this way;
6 sj := sj−1 + aj−1

7 else
8 if bj can be scheduled immediately after bj−1 without overlapping into

the processing time of other tasks then
9 Schedule it this way;

10 sj := sj−1 + aj−1 + bj−1 − aj
11 else
12 Start aj immediately after bj−1;
13 sj := sj−1 + aj−1 + bj−1 + L;

4 Results

Unfortunately, my IP solver can currently only handle tasks with a maximum of 7
jobs within an acceptable time frame, so I worked with such inputs. I ran both my IP
solver and the approximation algorithm for 50 inputs in 6 different cases based on L,
where I randomly selected aj and bj values between 1 and 10, and L took the values
5, 6, 7, 8, 9, and 10. In the following bar chart, you can see the results of these tests.
I denoted the optimum as Copt and the result obtained by the algorithm as Calg. For
each of the six cases, I plotted the average values of Calg/Copt and the number of cases
where the two values coincided.

It can be observed that the average values have become very similar. Out of the
300 inputs on which I tested, in none of the cases did the Calg/Copt ratio reach 1.25.

3

L=5 L=6 L=7 L=8 L=9 L=10

0

1

2

3

4

5

1.09 1.1 1.11 1.12 1.11 1.11

5

3

1 1

0 0

Calg/Copt |Calg = Copt|

In a given schedule, jobs form a block if their starting times directly follow each
other, and for any two directly following jobs, it holds true that the later scheduled
job starts earlier than the earlier one would have finished. I examined how blocks are
formed in the inputs where the Calg/Copt ratio is relatively high. I noticed that the
algorithm often produces worse results even when the order of job starting times is
the same in both schedules. This can occur when it is worthwhile to delay a job by
an amount of time in a way that it still forms a block with the previous job, and the
next job can still fit into the block. So, for the case of three consecutive jobs, let b2
start later than the completion of b1 by an amount that allows a3 to fit between the
two tasks. The following diagrams illustrate this situation, where the processing time
of the first part of each job is 2, the processing time of the second part is 1, and L is
3 (the arrangement is for the clarity of the blocks):

The optimal schedule:

a1

a2

b1

b2

a3 b3

a1

a2

b1

b2

a3 b3

4

The schedule obtained by the algorithm:

a1

a2

b1

b2

a3 b3

a1

a2

b1

b2

a3 b3

It is noticeable that when scheduling n jobs with the same parameters, in the optimal
schedule, each job forms a block, while in the schedule obtained by the algorithm,
every other job starts a new block.

For this task, I managed to achieve the highest value for the Calg/Copt ratio. The
obtained ratio for n jobs is:

2(n+ 1)(2n+ 1)

3n(n+ 3)
≈ 4

3
.

5 Further plans

In the next semester, I plan to enhance my IP solver to handle tasks with multiple
jobs within an acceptable time frame, possibly experimenting with multiple models. In
addition, I aim to make further progress in identifying instances where the algorithm
significantly underperforms.

References

[1] D. Fischer, P. Györgyi: Approximation algorithms for coupled task scheduling
minimizing the sum of completion times Ann. Oper. Res. 328(2): 1387-1408
(2023)

[2] Hanif D. Sheralia, J. Cole Smith. Interleaving two-phased jobs on a single ma-
chine. Discrete Optimization 2 348 – 361 (2005)

5

