Coupled task scheduling

Anna Markó

Supervisor: Péter Györgyi

January 8, 2024

Introduction

- Input: $(a_j, l_j, b_j)^n$
- Output: (s_1, \ldots, s_n)

Objective function

• Sum of completion times: $\sum_{j=1}^{n} C_{j}$

3-approx	2-approx	1.5-approx
a, l_j, b	$a, l_j, b, b \leq a$	$1,\mathit{I}_{j},1$
a_j, L, b_j	a_j, p_j, p_j	p_j, L, p_j
	p_j, p_j, b_j	p_j, p_j, p_j

Goals

- Create an IP solver for $(a_i, L, b_i)^n$
- Investigate how effective a 3-approximation algorithm is in practice
- Search for instances of poor results

IP solver

- Sherali and Smith's model
- Variables: $\forall i, j, k \ 1 \le i, j \le n, \ 1 \le k \le 6$: $y_{i,j,k} \in \{0,1\}$

Approximation algorithm

```
Algorithm 1:
```

```
Input : (a_i, b_i)  j = 1 ... n, L
   Output: (s_i)_{i=1}^n j = 1 \dots n
 1 Sort the jobs in non-decreasing order of a_i + b_i;
s_1 := 0;
3 for i = 2 ... n do
      if a_i can be scheduled immediately after a_{i-1} without overlapping into the
        processing time of other tasks then
           Schedule it this way;
 5
          s_i := s_{i-1} + a_{i-1}
      else
           if b_i can be scheduled immediately after b_{i-1} without overlapping into
            the processing time of other tasks then
              Schedule it this way:
 9
              s_i := s_{i-1} + a_{i-1} + b_{i-1} - a_i
10
          else
11
              Start a_i immediately after b_{i-1};
12
              s_i := s_{i-1} + a_{i-1} + b_{i-1} + L;
13
```

Results

$$6 * 50$$
 input, $n = 7$, $a_i, b_i \in \{1, ..., 10\}$

The optimal schedule:

The schedule obtained by the algorithm:

$$\frac{C_{alg}}{C_{opt}} = \frac{2(n+1)(2n+1)}{3n(n+3)} \approx \frac{4}{3}.$$

Further plans

- Develop my IP solver
- Make further progress in identifying instances where the algorithm significantly underperforms

References

- [1] D. Fischer, P. Györgyi: Approximation algorithms for coupled task scheduling minimizing the sum of completion times Ann. Oper. Res. 328(2): 1387-1408 (2023)
- [2] Hanif D. Sheralia, J. Cole Smith. *Interleaving two-phased jobs on a single machine*. Discrete Optimization 2 348 361 (2005)