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This semester, I started exploring a completely new topic, the rigidity of tensegrity
frameworks, with my supervisor, Tibor Jordán. The beginning of the semester was dedi-
cated to understanding the concepts and basic previous results of the field, summarized in
Chapter 1. Fortunately, in a relatively short time I was able to understand and investigate
some open problems. I present the developments related to these in this report. Theorem
2.2 in Chapter 2 is a new result from the work of this semester, where we managed to prove
a sharp upper bound on the number of edges for minimally infinitesimally rigid tensegrity
frameworks in 𝑑-dimensions (the case 𝑑 = 1 was previously settled in [4]). In Chapter 3, I
summarize our our steps and plan towards proving a related conjecture (Conjecture 3.1).

One semester is not a long time, so most of the questions remained open. We hope to
answer some of them in the next few months. Since I will also write my master thesis on
this topic, this is not a classic final report; the work continues after submission, hopefully
with more results.

1 Introduction
In rigidity theory, we usually deal with frameworks where the vertices of a graph are
considered as joints and the edges as rigid bars. Therefore, we consider a motion of
the framework legal, if the distance between the two endpoints of each edge remains
unchanged.

Tensegrity frameworks generalize bar frameworks with cables and struts instead of bars.
Cables cannot be stretched, and struts cannot be compressed; however, motion in the
other direction is permitted between their endpoints. The interest in tensegrity frameworks
was significantly raised by the works of the sculptor Kenneth Snelson. His monumental
creations, consisting of bars and cables, are visually striking as they stably stand with the
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bars not touching each other, creating an illusion of them floating in the air [8]. Our focus
on tensegrity frameworks is less artistic and more concerned with rigidity theory. First we
introduce the fundamental definitions about tensegrities. We use the sources [1, 4, 5, 6, 7].

A tensegrity graph 𝑇 = (𝑉,𝐶 ∪ 𝑆) is a graph on vertex set 𝑉 , in which each edge 𝑒 is
labelled as a cable or a strut. Accordingly, the edge set of 𝑇 is partitioned into two sets, 𝐶
and 𝑆.

A 𝑑-dimensional tensegrity framework (𝑇, 𝑝) is a pair, where 𝑇 = (𝑉,𝐶 ∪ 𝑆) is a
tensegrity graph and 𝑝 : 𝑉 −→ R𝑑 is a map, satisfying 𝑝(𝑢) ≠ 𝑝(𝑣) for each 𝑢𝑣 ∈ 𝐶 ∪ 𝑆.
We also say that (𝑇, 𝑝) is a realization of 𝑇 in R𝑑 .

A 𝑑-dimensional realization (𝑇, 𝑝) of𝑇 is called generic if the set of the 𝑑 |𝑉 | coordinates
of the points 𝑝(𝑣), 𝑣 ∈ 𝑉 (𝑇), is algebraically independent over the rationals. It is injective
if 𝑝(𝑢) ≠ 𝑝(𝑢) for all pairs of distinct vertices 𝑢, 𝑣 ∈ 𝑉 .

The underlying graph of 𝑇 = (𝑉,𝐶 ∪ 𝑆), denoted by 𝑇 = (𝑉, 𝐸), is a graph on vertex set
𝑉 in which 𝑢𝑣 ∈ 𝐸 if and only if 𝑢𝑣 ∈ 𝐶 ∪ 𝑆 holds. The bar-and-joint framework (𝑇, 𝑝) is
the framework obtained by replacing every strut and cable in (𝑇, 𝑝) with a bar.

An infinitesimal motion of a tensegrity framework (𝑇, 𝑝) is an assignment 𝑚 : 𝑉 −→ R𝑑
which satisfy

(𝑝(𝑢) − 𝑝(𝑣)) · (𝑚(𝑢) − 𝑚(𝑣)) ≤ 0 for each cable 𝑢𝑣 ∈ 𝐶,
(𝑝(𝑢) − 𝑝(𝑣)) · (𝑚(𝑢) − 𝑚(𝑣)) ≥ 0 for each strut 𝑢𝑣 ∈ 𝑆.

A tensegrity framework (𝑇, 𝑝) is infinitesimally rigid if every infinitesimal motion of
(𝑇, 𝑝) is an infinitesimal isometry of R𝑑 .

The matrix of this system of linear inequalities is the rigidity matrix 𝑅(𝑇, 𝑝) of (𝑇, 𝑝)
of size |𝐸 | × 𝑑 |𝑉 |, where, for each edge 𝑒 = 𝑢𝑣 ∈ 𝐶 ∪ 𝑆, in the row corresponding to 𝑒, the
entries in the two columns corresponding to vertices 𝑢 and 𝑣 contain the 𝑑 coordinates of
(𝑝(𝑢) − 𝑝(𝑣)) and (𝑝(𝑣) − 𝑝(𝑢)), respectively, and the remaining entries are zeros. Notice
that the rigidity matrix of a tensegrity framework (𝑇, 𝑝) is the same as the rigidity matrix
of the bar-and-joint framework (𝑇, 𝑝). It is known that a bar-and-joint framework (𝐺, 𝑝)
is infinitesimally rigid if and only if the rank of its rigidity matrix is 𝑆( |𝑉 |, 𝑑), where

𝑆( |𝑉 |, 𝑑) =
{
𝑑 |𝑉 | −

(𝑑+1
2
)

if |𝑉 | ≥ 𝑑 + 2( |𝑉 |
2
)

if |𝑉 | ≤ 𝑑 + 1

For a set 𝐴 of edges of 𝑇 we use 𝑅𝐴 (𝑇, 𝑝) to denote the submatrix of the rigidity matrix
𝑅(𝑇, 𝑝) induced by the rows of 𝐴. Thus,𝑚 ∈ R𝑑 |𝑉 | is a infinitesimal motion of a tensegrity
framework (𝑇, 𝑝) if 𝑅𝐶 (𝑇, 𝑝) · 𝑚 ≤ 0 and 𝑅𝑆 (𝑇, 𝑝) · 𝑚 ≥ 0.

For the infinitesimal rigidity of tensegrity frameworks Roth and Whiteley gave a nice
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characterizaton (Theorem 1.1), in which they use the concept of a stress on the edge set
of a framework.

A stress of a tensegrity framework (𝑇, 𝑝) in R𝑑 is a function 𝜔 : 𝐶 ∪ 𝑆 −→ R, which
assigns a scalar to each edge of 𝑇 such that 𝜔(𝑒) ≤ 0 for each cable 𝑒 ∈ 𝐶, 𝜔(𝑒) ≥ 0 for
each strut 𝑒 ∈ 𝑆 and∑︁

𝑢𝑣∈𝐶∪𝑆
𝜔(𝑢𝑣) (𝑝(𝑢) − 𝑝(𝑣)) = 0 for each vertex 𝑣 ∈ 𝑉.

Notice that it means 𝜔 · 𝑅(𝑇, 𝑝) = 0.
The support of a stress𝜔 of (𝑇, 𝑝) is the set of edges with non-zero stress, i.e. supp(𝜔) =

{𝑒 ∈ 𝐶 ∪ 𝑆 : 𝜔(𝑒) ≠ 0}. A proper stress 𝜔 of a tensegrity framework (𝑇, 𝑝) in R𝑑 is
a stress of (𝑇, 𝑝) with every edge on its support, i.e. 𝜔(𝑒) < 0 for each cable 𝑒 ∈ 𝐶,
𝜔(𝑒) > 0 for each strut 𝑒 ∈ 𝑆

An infinitesimally rigid tensegrity framework (𝑇, 𝑝) in R𝑑 is called minimally infinites-
imally rigid in R𝑑 if (𝑇 − 𝑒, 𝑝) is not infinitesimally rigid in R𝑑 for every edge 𝑒 of
𝑇 .

Now we introduce a fundamental theorem of the study of tensegrity frameworks, at-
tributed to Roth and Whiteley [1].

Theorem 1.1 (Roth, Whiteley). Let (𝑇, 𝑝) be a tensegrity framework in R𝑑 . Then (𝑇, 𝑝)
is infinitesimally rigid if and only if (𝑇, 𝑝) is infinitesimally rigid and there exists a proper
stress of (𝑇, 𝑝).

In the following chapters, we discuss minimally infinitesimally rigid tensegrity frame-
works. Note that if a 𝑑-dimensional tensegrity framework (𝑇, 𝑝) has no more than 𝑑 + 1
vertices, then, according to Theorem 1.1 and our knowledge on bar frameworks, if (𝑇, 𝑝)
is minimally infinitesimally rigid, then 𝑇 can only be the cable-strut complete graph (i.e.,
(𝑉,𝐶) = (𝑉, 𝑆) = 𝐾 |𝑉 |). In this case, we understand the minimal instances well, and they
are not very interesting. Therefore, in the following, we will only consider cases where the
number of vertices is at least 𝑑 + 2.

2 Minimally infinitesimally rigid tensegrity frameworks
Consider a minimally infinitesimally rigid framework (𝐺, 𝑝) in R𝑑 . Removing any edge
𝑢𝑣 from (𝐺, 𝑝), there exists an infinitesimal motion where the distance between 𝑢 and
𝑣 increases and another one where it decreases (because the negative of an infinitesimal
motion is also a motion). Therefore, replacing each bar in (𝐺, 𝑝) with a parallel strut-cable
pair leads to an infinitesimally rigid tensegrity (it is intuitively clear and also easy to verify
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using the conditions in Theorem 1.1) and removing any edge from this tensegrity allows
an infinitesimal motion. Thus, tensegrity frameworks constructed this way are minimally
infinitesimally rigid. It is known that a 𝑑-dimensional minimally infinitesimally rigid
framework with |𝑉 | ≥ 𝑑 + 2 has exactly 𝑑 |𝑉 | −

(𝑑+1
2
)

edges [5], implying the existence of
a minimally infinitesimally rigid tensegrity framework in R𝑑 with 2 · (𝑑 |𝑉 | −

(𝑑+1
2
)
) edges

for any 𝑑 and |𝑉 | ≥ 𝑑 + 2.
We show that a minimally infinitesimally rigid tensegrity framework in R𝑑 cannot have

more edges than this. The proof employs a variant of Carathéodory’s theorem from convex
geometry, attributed to Ernst Steinitz [2], see also [3].

Let 𝐴 ⊂ R𝑛 be a finite set of points. The convex hull of 𝐴 is the set conv(𝐴) = {∑𝜆𝑖𝑎𝑖 :
𝑎𝑖 ∈ 𝐴,

∑
𝜆𝑖 = 1, 𝜆𝑖 ≥ 0}.

Theorem 2.1 (Steinitz). Consider 𝑋 ⊂ R𝑛 a finite set of points, where conv(𝑋) is 𝑘-
dimensional and contains a 𝑘-dimensional ball centered at 𝑥. Then there is a subset𝑌 ⊆ 𝑋

of at most 2𝑘 points such that conv(𝑌 ) contains a 𝑘-dimensional ball with the same center.

Using this theorem, we prove a sharp upper bound on the edge count of minimally
infinitesimally rigid tensegrity frameworks, depending on the number of vertices and
dimensions.

Theorem 2.2. Let (𝑇, 𝑝) be a minimally infinitesimally rigid realization of𝑇 = (𝑉,𝐶∪𝑆)
in R𝑑 with |𝑉 | ≥ 𝑑 + 2. Then |𝐶 ∪ 𝑆 | ≤ 2 ·

(
𝑑 |𝑉 | −

(𝑑+1
2
) )

.

Proof. Assume that (𝑇, 𝑝) is minimally infinitesimally rigid in R𝑑 . Let 𝑁 = 𝑑 |𝑉 | −
(𝑑+1

2
)
.

Let 𝑅′(𝑇, 𝑝) be the matrix obtained by replacing the rows corresponding to cables in
the rigidity matrix 𝑅(𝑇, 𝑝) with their negatives. According to Theorem 1.1 by Roth and
Whiteley, the tensegrity framework (𝑇, 𝑝) is infinitesimally rigid if and only if

(1) 𝑇 is infinitesimally rigid, equivalently: the rows of 𝑅′(𝑇, 𝑝) generate a subspace of
dimension 𝑁 ,

(2) and there exists 𝜔 ∈ R𝐸 such that 𝜔 > 0 and 𝜔 · 𝑅′(𝑇, 𝑝) = 0, equivalently: there
exists a positive convex combination of the rows of 𝑅′(𝑇, 𝑝) that results in zero.

Let 𝑋 ⊂ R𝑑 |𝑉 | denote the set of the rows of 𝑅′(𝐺, 𝑝). Then (1) and (2) implies that
(𝑇, 𝑝) is infinitesimally rigid if and only if conv(𝑋) forms an 𝑁-dimensional polytope
containing an 𝑁-dimensional ball centered at the origin. By Steinitz’s theorem, one can
select a set 𝑌 ⊆ 𝑋 with at most 2𝑁 elements such that conv(𝑌 ) forms a 𝑁-dimensional
polytope containing a 𝑁-dimensional ball centered at the origin.
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Therefore, if |𝐶 ∪ 𝑆 | ≥ 2𝑁 + 1 then there exists a row of 𝑅′(𝑇, 𝑝) such that removing
it does not change the rank of the matrix and there exists a positive convex combination
of the rows that results in zero. So, by removing an edge, (1) and (2) still hold, thus the
framework remains infinitesimally rigid, contradicting the minimality of 𝑇 . □

3 Without parallel edges
A further interesting question is whether we can prove a better upper bound on the number
of edges in minimally infinitesimally rigid tensegrity frameworks when we forbid parallel
cable-strut pairs.

In the 1-dimensional case, we already know the answer. According to [4], the bound of
Theorem 2.2 is sharp (i.e. a minimally rigid tensegrity framework has exactly 2|𝑉 | − 2
edges) in R1 if and only if the framework is a cable-strut tree. Therefore, if (𝑇, 𝑝) is a
minimally rigid realization of 𝑇 = (𝑉,𝐶 ∪ 𝑆) in R1, and there are no parallel edges in 𝑇 ,
then |𝐶 ∪ 𝑆 | ≤ 2|𝑉 | −3. This is sharp: consider the tensegrity 𝑇 that consists of a complete
bipartite graph 𝐾2,|𝑉 |−2 of cables and an additional strut connecting the two vertices of
degree ( |𝑉 | −2). It is easy to see that 𝑇 has a minimally infinitesimally rigid representation
on the line with exactly 2|𝑉 | − 3 edges.

In the 2-dimensional case, the question is currently open. We conjecture that it remains
true here (and in the 𝑑-dimensional case in general), that the bound of Theorem 2.2 will
be sharp precisely for those tensegrities that correspond to minimally infinitesimally rigid
bar-and-joint frameworks, where the bars are replaced by parallel cable-strut pairs.

Consider the following tensegrity framework (𝑇, 𝑝) in R2: take a unit square of cables,
and add |𝑉 | − 4 vertices precisely at its center, each connected to every vertex of the
square with struts. It can be easily verified that (𝑇, 𝑝) is minimally infinitesimally rigid
in R2 and has exactly 4( |𝑉 | − 4) + 4 = 4|𝑉 | − 12 edges, which is very close to the bound
proved in Theorem 2.2. However, notice that this example is not generic (in fact, it is not
even injective), and if we slightly move any of the central points (assume that there are
at least two of them), then one of the struts attached to it becomes redundant, making the
framework no longer minimal. Therefore, without any restrictions on 𝑝, we cannot hope
for a significantly better upper bound.

Now consider the case where 𝑝 is assumed to be generic. In this scenario, our conjecture
for the upper bound in the 2-dimensional generic case is 3|𝑉 | − 6 (the general conjecture
for 𝑑-dimension is (𝑑 + 1) |𝑉 | −

(𝑑+2
2
)

according to [4]). During most of the semester, we
attempted to verify this. In this chapter, we summarize the observations related to this
question, which hopefully bring us closer to the proof.
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Conjecture 3.1. Let (𝑇, 𝑝) be a minimally infinitesimally rigid generic realization of
𝑇 = (𝑉,𝐶 ∪ 𝑆) in R2 with |𝑉 | ≥ 𝑑 + 2. Then |𝐶 ∪ 𝑆 | ≤ 3|𝑉 | − 6.

If this conjecture was true, then it is sharp. Consider the following tensegrity 𝑇 : take a
triangle of cables, and add |𝑉 | − 3 vertices, each connected to every vertex of the triangle
with struts. It is easy to see that 𝑇 has a minimally infinitesimally rigid generic realization
in R2 and has exactly 3|𝑉 | − 6 edges.

As we mentioned before, Clay, Jordán, and Palmer proved Theorem 2.2 for the case of
𝑑 = 1 in [4]. One key idea of the proof was using Lemma 3.1 from the paper of Roth and
Whiteley [1]. The proof involves several steps that can be generalized to two or even higher
dimensions. We hope that by adding some new ideas, we can provide a similar proof for
Conjecture 3.1.

We plan to apply some matroid theory, we use the terminology of the technical report
of Jordán [5].

The rigidity matroid of a 𝑑-dimensional framework (𝐺, 𝑝) is defined on the edge set 𝐸
of 𝐺, where 𝐹 ⊆ 𝐸 is independent if and only if the corresponding rows of the rigidity
matrix 𝑅(𝐺, 𝑝) are linearly independent. It is known that if 𝑝 is generic, then the rigidity
matroid depends only on 𝐺. Therefore, we denote the rigidity matroid associated with a
𝑑-dimensional generic realization of𝐺 by R𝑑 (𝐺). It is not difficult to see that R1(𝐺) is the
circuit matroid of 𝐺. According to Laman’s theorem, R2(𝐺) is also well-characterized,
since it is equivalent to the sparsity matroid of𝐺. More precisely, the edge set of a subgraph
𝐻 of𝐺 is independent in the rigidity matroid if and only if 𝐻 is sparse, i.e. for every subset
𝑋 of at least 2 vertices in 𝐻, the number of edges spanned by 𝑋 is at most 2|𝑋 | − 3.

A subgraph 𝐻 = (𝑊,𝐶) of 𝐺 is said to be an 𝑀-circuit in 𝐺 if 𝐶 is a circuit (i.e. a
minimal dependent set) in R2(𝐺), equivalently: |𝐶 | = 2|𝑊 | − 2, and for all proper subsets
𝑋 ⊂ 𝑊 there are at most 2|𝑋 | − 3 edges in 𝐶 induced by 𝑋 .

A matroid is connected if, for any two of its elements, there exists a circuit containing both
of them. Connectivity of the matroid can be characterized using matroid ear decomposition.
We say that a sequence of circuits 𝐶1, 𝐶2, . . . , 𝐶𝑡 of the matroid M = (𝐸,I) is an ear
decomposition of M if𝐶1∪𝐶2∪ . . .∪𝐶𝑡 = 𝐸 and for all 2 ≤ 𝑖 ≤ 𝑡 the following properties
hold: (E1) 𝐶𝑖 ∩ (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1) ≠ ∅, (E2) 𝐶𝑖 − (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1) ≠ ∅ and 𝐶𝑖
is minimal with respect to (E1) and (E2), i.e. no circuit 𝐶′

𝑖
satisfying (E1) and (E2) has

𝐶′
𝑖
− (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1) properly contained in 𝐶𝑖 − (𝐶1 ∪ 𝐶2 ∪ . . . ∪ 𝐶𝑖−1). It is easy

to verify that a matroid is connected if and only if it has a ear decomposition. We say that
a graph 𝐺 = (𝑉, 𝐸) is 𝑀-connected if R2(𝐺) is connected.

The following lemma from the paper of Roth and Whiteley [1] seems to be very useful.

Lemma 3.1 (Roth and Whiteley [1]). Let (𝑇, 𝑝) be a realization of the tensegrity graph
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𝑇 = (𝑉,𝐶∪𝑆) inR𝑑 and let 𝑒 ∈ 𝐶∪𝑆. If there exists a stress of (𝑇, 𝑝) with 𝑒 in its support,
then there exists a stress𝜔 of (𝑇, 𝑝) with 𝑒 in its support and such that rank𝑅𝐴 (𝑇, 𝑝) = |𝐴|
for every 𝐴 ⊂ supp(𝜔).

According to Theorem 1.1, if (𝑇, 𝑝) is an infinitesimally rigid tensegrity framework then
there exists a proper stress of (𝑇, 𝑝), therefore, for every edge, the conditions of Lemma
3.1 are satisfied. Hence, each edge is part of a sub-tensegrity whose edge set is the support
of a stress and forms a minimally connected set of rows in the rigidity matrix. In R2 this
means that each edge of 𝑇 is in an 𝑀-circuit with a proper stress on its edge set. Using
Theorem 1.1 with the fact that bar-and-joint 𝑀-circuits are infinitesimally rigid, it follows
that every sub-tensegrity given by Lemma 3.1 are rigid in R2, in fact, according to the
following lemma from [4], they are minimally infinitesimally rigid, if (𝑇, 𝑝) is minimally
infinitesimally rigid.

Lemma 3.2. Let (𝑇, 𝑝) be a minimally infinitesimally rigid tensegrity framework in R𝑑 .
Then every infinitesimally rigid subframework of (𝑇, 𝑝) is minimally infinitesimally rigid.

Using these lemmas, we can easily prove that the 𝑀-connected components of a mini-
mally infinitesimally rigid tensegrity framework in R2 are also minimally infinitesimally
rigid.

Lemma 3.3. If (𝑇, 𝑝) is a minimally infinitesimally rigid generic tensegrity framework
in R2, then each subframework induced by an 𝑀-connected component of 𝑇 is minimally
infinitesimally rigid.

Proof. Let (𝐻, 𝑝𝐻) be an 𝑀-connected component of a minimally infinitesimally rigid
tensegrity framework (𝑇, 𝑝). By Lemma 3.2, it is sufficient to prove that (𝐻, 𝑝𝐻) is
infinitesimally rigid. Since (𝑇, 𝑝) is infinitesimally rigid, according to Lemma 3.1, for
each edge 𝑒, it is an element of an infinitesimally rigid 𝑀-circuit 𝐶𝑒. Note that, by the
definition of matroid ear decomposition, each 𝑀-circuit of 𝑇 is entirely contained in one
of the 𝑀-connected components of 𝑇 . Therefore, for each edge 𝑒 of 𝐻 the union of the
corresponding 𝑀-circuits 𝐶𝑒 results in 𝐻. Since each 𝐶𝑒 is an infinitesimally rigid sub-
tensegrity, by Theorem 1.1, there exists a proper stress on their edges, and by summing these
stresses, we obtain a proper stress on (𝐻, 𝑝𝐻). It is known that 𝑀-connected components
are infinitesimally rigid as bar-and-joint frameworks, so the lemma follows from Theorem
1.1. □

It can be easily calculated that if the conjecture holds for the 𝑀-connected components,
then it holds for the entire tensegrity framework.
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Lemma 3.4. If each 𝑀-connected component of a generic tensegrity framework (𝑇, 𝑝)
satisfies the upper bound of Conjecture 3.1, then 𝑇 satisfies the upper bound of Conjecture
3.1.

Proof. Let 𝐻1, 𝐻2, . . . , 𝐻𝑞 be the 𝑀-connected components of 𝑇 . Assume that 𝐻𝑖 have
at most 3|𝑉 (𝐻𝑖) | − 6 edges for all 𝑖 = 1, 2, . . . , 𝑞. Let 𝑟 (𝐻𝑖) denote the rank of the
matroid R2(𝐻𝑖). Since 𝑀-connected bar-and-joint frameworks are infinitesimally rigid,
𝑟 (𝐻𝑖) = 2|𝑉 (𝐻𝑖) | − 3 for all 𝑖 = 1, 2, . . . , 𝑞. Then

|𝐶 ∪ 𝑆 | ≤
𝑞∑︁
𝑖=1

(3|𝑉 (𝐻𝑖) | − 6) =
𝑞∑︁
𝑖=1

(
3
2
𝑟 (𝐻𝑖) −

3
2

)
=

=
3
2

𝑞∑︁
𝑖=1

𝑟 (𝐻𝑖) −
3𝑞
2

= 3|𝑉 | − 9
2
− 3𝑞

2
≤ 3|𝑉 | − 6,

where the last equality holds, because the rank of R2(𝑇) is 2|𝑉 | − 3 and is equal to the
sum of the rank of the 𝑀-connected components of 𝑇 . □

To sum up, we can see that it would be sufficient to prove the conjecture for minimally
rigid tensegrity frameworks (𝑇, 𝑝) where R𝑑 (𝑇) is connected, therefore, it has a matroid
ear decomposition. The following lemma is from [5].

Lemma 3.5. Let the 𝑀-circuit 𝐶𝑖 (𝑖 ≥ 2) be an element of the ear decomposition
𝐶1, 𝐶2, . . . , 𝐶𝑡 of the rigidity matroid R2(𝐺) of a graph 𝐺 and let 𝑉+

𝑖
(resp. 𝐸+

𝑖
) de-

note the vertices (resp. the edges) of 𝐺 contained in 𝐶𝑖 but not in 𝐶1 ∪ 𝐶2,∪ . . . ∪ 𝐶𝑖−1.
Then |𝐸+

𝑖
| = 2|𝑉+

𝑖
| + 1 holds for each 2 ≤ 𝑖 ≤ 𝑡.

Another important lemma from [4]:

Lemma 3.6. Let (𝑇1, 𝑝1) and (𝑇2, 𝑝2) be infinitesimally rigid tensegrity frameworks inR𝑑

such that they share a set of 𝑑 vertices in general position. Then their union is infinitesimally
rigid in R𝑑 .

If we managed to prove that there always exists an ear decomposition of R2(𝑇) where
there is no trivial ear, i.e. |𝑉+

𝑖
| > 0 for each 𝐶𝑖 then the conjecture would follow from the

simple calculation below (for simplicity, 𝑉+
1 and 𝐸+

1 denote the vertices and edges of 𝐶1):

|𝐶 ∪ 𝑆 | =
𝑡∑︁
𝑖=1

|𝐸+
𝑖 | =

𝑡∑︁
𝑖=1

(2|𝑉+
𝑖 | + 1) − 3 ≤ 2|𝑉 | + (|𝑉 | − 3) − 3 = 3|𝑉 | − 6,

where we used |𝐸+
1 | = 2|𝑉+

1 | − 2 and 𝑡 ≤ |𝑉 | − 3 based on the assumption that there is no
trivial ear.
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If, for example, there was always an ear decomposition such that every 𝐶𝑖 is a minimally
infinitesimally rigid sub-tensegrity – this does seem possible, as, according to Lemma 3.1,
each edge is part of a minimally infinitesimally rigid 𝑀-circuit – then, by Lemma 3.2 and
Lemma 3.6, at each step of the ear decomposition, the tensegrity framework would be
minimally infinitesimally rigid, thus induced by a vertex set, so none of the ears could be
trivial.

The results look promising; however, we currently do not see how to find such an ear
decomposition. Therefore, Conjecture 3.1 remains a conjecture for now.

We can prove the conjecture if we assume that all the vertices are in convex position
and the subgraph (𝑉,𝐶) forms the boundary cycle of the convex hull. Notice, that in this
case all of the minimally infinitesimally rigid 𝑀-circuits given by Lemma 3.1 contain
the subgraph (𝑉,𝐶) (this is because there must be at least one cable in each of the
infinitesimally rigid subframeworks and it follows from the setting of the cables that if
one of them is the element of an infinitesimally rigid sub-tensegrity, then all of them are).
Since these circuits are minimally rigid, they are induced by their vertex sets 𝑉 , so there
can be only one of them. Therefore, a tensegrity framework from this family is minimally
infinitesimally rigid if and only if its graph is an 𝑀-circuit.

Our next goal is to verify the conjecture for the same family with the modification that
allows for points to be inside the convex hull as well, but (𝑉,𝐶) still forms the boundary
cycle of the convex hull. Here it is also true that the minimally infinitesimally rigid circuits
given by Lemma 3.1 contain (𝑉,𝐶), so, property (E1) of ear decomposition holds for any
subset and order of the circuits which satisfly property (E2). However, it is not clear how
we ensure the minimality of the ears.

9



References
[1] B. Roth and W. Whiteley. Tensegrity frameworks. Transactions of the American

Mathematical Society, 265(2), 419-446, 1981.

[2] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. i-ii-iii. J. Reine
Angew. Math., 143 (1913), 128–175, 144 (1914), 1–40, 146 (1916), 1-52.

[3] W. E. Bonnice and J. R. Reay. Relative interiors of convex hulls. Proceedings of the
American Mathematical Society, 20(1), 246-250. 1969.

[4] A. Clay, T. Jordán and J. Palmer. Minimally rigid tensegrities on the line. 2024 Joint
Mathematics Meetings. (JMM 2024). AMS.

[5] T. Jordán. Combinatorial rigidity: graphs and matroids in the theory of rigid frame-
works. Discrete Geometric Analysis, MSJ Memoirs, vol. 34, pp. 33-112, 2016.

[6] M. Sitharam, A. S. John and J. Sidman, eds. Handbook of geometric constraint
systems principles. CRC Press, 2018.

[7] R. Connelly. Tensegrities and global rigidity. In Shaping Space: Exploring Polyhedra
in Nature, Art, and the Geometrical Imagination. pp. 267-278. New York, NY:
Springer New York. 2012.

[8] http://kennethsnelson.net/category/sculptures/outdoor-works/

10


	Introduction
	Minimally infinitesimally rigid tensegrity frameworks
	Without parallel edges

